
o.OM: Structured-Functional Communication between

Computer Music Systems using OSC and Odot

Jean Bresson, John Maccallum, Adrian Freed

To cite this version:

Jean Bresson, John Maccallum, Adrian Freed. o.OM: Structured-Functional Commu-
nication between Computer Music Systems using OSC and Odot. ACM SIGPLAN
Workshop on Functional Art, Music, Modeling & Design (FARM ’16), 2016, Nara,
Japan. Proceedings of ACM SIGPLAN International Conference on Functional Program-
maing (ICFP’16) – Workshop on Functional Art, Music, Modeling & Design (FARM).
<10.1145/http://dx.doi.org/10.1145/2975980.2975985>. <hal-01353794>

HAL Id: hal-01353794

https://hal.archives-ouvertes.fr/hal-01353794

Submitted on 13 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01353794

o.OM: Structured-Functional Communication between
Computer Music Systems using OSC and Odot

Jean Bresson1,2 John MacCallum1 Adrian Freed1

1Center for New Music and Audio Technologies, UC Berkeley, USA
2UMR STMS – Sorbonne Universités IRCAM-CNRS-UPMC, Paris, France
bresson@ircam.fr, adrian@cnmat.berkeley.edu, john@cnmat.berkeley.edu

Abstract
O.—odot—is a portable media programming framework based on
the OSC data encoding. It embeds a small expression language
which allows writing and executing programs in OSC structures. The
integration of programming and declarative functional descriptions
within data transfer protocols enables structured and expressive com-
munication in media systems: program snippets can be distributed
in OSC messages, which evaluate to further OSC messages in the
different communicating software. We present experiments using
this framework in the OpenMusic computer-aided composition en-
vironment, and illustrate via case studies some advantages of such
integrated system.

Categories and Subject Descriptors D.1.1: Software [Program-
ming Techniques]: Applicative (Functional) Programming

Keywords Musical domain-specific languages, OSC, Computer-
aided composition

1. Introduction
Contemporary practice in computer music involves an increasing
amount of communicating software and devices. In this context
OpenSoundControl—OSC (Wright 2005)—has become a lingua
franca for data transfer and control interactions. Applications and
projects using it today are countless.

OSC messages have a fairly simple syntax and structure. They
consist in a variable-length list of values preceded by an URL-
like string called an address, which usually describes a “target”
binding the values. They are generally streamed via UDP between
applications or devices, although they may also be used as simple
vehicles for structured information, e.g. in media programming
environments. A number of features and constructs allow to structure
OSC messages, such as:

• Type-tags assigned to each value in the messages. A pair (type-
tag · value) is actually called and encoded as an atom.

• Time-tags which allow the setting of precise and universal-time
labels to the messages in order to structure reliable timed control
streams (Schmeder and Freed 2008).

• Bundles: aggregate data structures containing a set of messages.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

FARM’16 September 18-22, 2016, Nara, Japan
Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4432-6/16/09. . . $15.00
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2975980.2975985

Despite these different features, however, flat streams of weakly
timed messages are the common use, which results in a frequent
lack of hierarchy and structure in most media communication
frameworks using UDP and OSC.

The odot library (Freed et al. 2011) is a software package
allowing to deal with OSC-encoded data in media programming
environments, using OSC bundles as a base aggregate data structure
to enhance internal and external data transmission schemes, program
structuring, and expressivity in these environments. In particular, the
library embeds a dedicated functional expression language allowing
to process and transform bundles dynamically.

This paper is a report on experiments using odot in compositional
processes implemented in OpenMusic (OM), another functional,
visual programming language dedicated to computer-aided music
composition (Assayag et al. 1999; Bresson et al. 2011). Embedding
the odot expression language and programs in this context extends
expressivity in communicating with other media environments by
sharing a common language.

The paper is structured as follows: Section 2 first gives a brief
introduction on OpenMusic and the general context of this work.
Section 3 then presents the odot library, and Section 4 details
different aspects of the odot integration in OpenMusic. Section 5
finally gives two examples of applications involving communication
with the Max environment.

2. OpenMusic – Compositional Processes
OpenMusic (OM) is a visual programming language dedicated to
computer-aided music composition. Based on and written entirely
in Lisp/CLOS, it offers all programming features of this language
(Bresson et al. 2009) and puts together graphically or textually-
designed Lisp programs in advanced musical processes and work-
flows.

OpenMusic visual programs (also called patches) generally in-
volve musical structures (scores, sounds, and other kind of musical
material) processed by functional expressions designed as directed
acyclic graphs. Output musical objects can be played (when rele-
vant), inspected or modified via graphical editors. In contrast with
numerous mainstream music programming systems, the execution
paradigm of OM is called “demand-driven”: it requires the user
(composer/programmer) to evaluate components in these graphs
when needed, in order to update values and produce musical struc-
tures.1

Figure 1 shows a very simple OM visual program, where the
break-points of a hand-drawn graphic are mapped and converted to

1 This execution strategy, also sometimes referred to as “deferred-time”,
is usually best suited to compositional tasks for it makes computation
independent from real-time constraints, and actually makes the temporal
dimension of musical structures just another parameter of the programs.

onset and pitch values instantiating chords in a score. The boxes on
this visual program represent either functions (mapcar, om-scale),
object constructors (BPF, SCORE), embedded programs/abstractions
(the make-chords box actually stands for another sub-patch used
as a lambda function connected to mapcar), or simple numerical
values. They are patched together through connections determining
the functional composition of the program. After programming
the basics of this patch, a typical workflow with it would be for
instance to edit the points in the editor, evaluate the SCORE at
the bottom, modify the pitch values (6000, 8000) at the top, or
eventually reprogram parts of it until reaching satisfactory results
(this workflow is to be imagined and scaled to the context of more
complex patches, involving multiple intermediate states and data
structures—see (Agon et al. 2006-2008) for advanced examples of
uses and applications of the OpenMusic environment).

Figure 1. A simple visual program (or patch) in OpenMusic. An
editor for the BPF object is open on the right.

OpenMusic communicates through OSC with other musical
or multimedia environments. Typically such communication takes
place with real-time systems like Max (Puckette 1991) or PureData
(Puckette 1996). These popular graphical programming environ-
ments process data streams or signals in data-flow graphs and are
commonly used for the implementation of interactive systems or
sound processing units in music performances or media installa-
tions. OpenMusic and Max/PureData therefore operate in different
paradigms that co-exist in music production (offline/compositional
vs. real-time/interactive) (Puckette 2004; Giavitto 2014), and com-
posers frequently use them synergistically.2 In the remaining of
this paper we will study interactions and communication strategies
permitted by embedding functional specification and programming
within the data transferred between these environments through the
use of the odot library.

3. Odot
O.—odot—is a framework for media/arts programming that uses
OSC as its fundamental datatype. It is a superset of OSC providing
support for a small number of additional typetags,3 as well as a
functional expression-language interpreter, which makes it possible
to write and evaluate expressions to process data contained in
OSC bundles. The interpreter evaluates expressions taking an OSC
bundle as unique argument and produces a modified copy of
this bundle. Expressions themselves can be written and contained

2 In contrast with the OM “deferred-time” executions considered previously,
“real-time” systems have no in-built conception of a time dimension in
musical structures and continuously process individual bits of incoming data
or audio.
3 For instance, the support for a bundle type-tag allows for OSC messages to
contain sub-bundles, implementing nested or hierarchical structures.

in OSC messages, making the bundle a rich context for data
aggregation/storage, program writing, and execution.

The syntax and semantics of odot expressions are straightfor-
ward and inspired by popular scripting and functional languages.
They include standard arithmetic operators on scalar and vectors,
assignment (=), functional abstraction (lambda), higher-order func-
tions such as map and fold, as well as several primitive operations to
manipulate the contents of bundles (such as assign, delete, etc.). At
evaluation time the incoming OSC bundle is copied to a “working”
bundle, and the nested functions are computed using operand values
referenced by address name from this bundle: the OSC addresses
bind data contained in the bundle, and can be used to create new
messages in it. For instance: “/y = /x + 1” means that a message
with address /y will take a new value computed from the current
value of /x if present in the working bundle, or it will be created and
added into it otherwise.

The most mature implementation of odot is in the Max media
programming framework, where the library can use OSC bundles
as structured data containers passed and transformed via functional
expressions in the real-time dataflow graphs (Freed et al. 2011). Fig-
ure 2 shows an example of a Max patch processing data using odot
functions and user-defined operations written in the odot language.

Figure 2. Simple reactive/data-flow patch in Max using odot.
o.union joins bundles containing incoming data (e.g. from a MIDI
keyboard) and some code written in the odot language. The box
eval(/expr) evaluates the contents of /expr as found in the incoming
bundle in the context of this same bundle, and returns a new bundle.
A “/chord” message is generated and added in the new bundle, later
converted into MIDI notes by the Max functions at the bottom.

4. o.OM
OSC-encoded messages and bundles are used in OpenMusic for
transferring data to external software, or to share this data with
external linked libraries. Recent applications include for instance
the integration of gesture data from augmented drawing devices
(Garcia et al. 2014), the control of automatic guided improvisation
systems (Nika et al. 2015), or the connection of compositional
processes with mobile devices and spatial audio renderers (Garcia
et al. 2015).

The work presented in this paper is an experimental implemen-
tation of the visual language integrating native support for OSC
messages and bundles processing via a foreign function interface to
the odot library (MacCallum et al. 2015).

4.1 Tools for the Manipulation of OSC Bundles
The basic data structure of our OSC framework is the class OSC-
BUNDLE. An OSC-BUNDLE contains a list of OSC messages. Each
message is a simple linked list containing an address (string)
followed by a list of freely typed data. OSC-BUNDLEs also have a
“date” attribute, determining their positing in temporal structures.

At a lower level, an OSC-BUNDLE is paired to another structure
called an O.BUNDLE. The O.BUNDLE wraps around a pointer to a
serialized binary representation of the OSC bundle generated via the
odot library (including the set of messages and a time-tag generated
from the date attribute), suitable for processing by this library or for
direct transmission via UDP. Conversions between an OSC-BUNDLE
and an O.BUNDLE can be implicit and internally carried out by
the tools and functions of our framework, or they can be explicit
via simple connections in OM visual programs. Figure 3 shows a
simple OM visual program producing, encoding and sending out
OSC bundles via UDP.

Figure 3. Formatting and sending an OSC bundle in an OM visual
program. Note the use of O.BUNDLE to serialize the OSC messages
as a binary stream.

Compositional environments like OM can help structuring com-
pound temporal structures including OSC messages and bundles.
Figure 4 shows a DATA-STREAM editor: a container and interface
allowing to represent and render arbitrary data chunks laid out in a
timeline, featuring timing control and programmable mapping of
the data to graphical attributes (shape, size, position, color, etc.).
This container can embed timed sequences of OSC-BUNDLEs, for
instance to monitor (edit, visualize) the streaming of OSC messages
to external applications. Every data chunk in it is associated to an
action to perform during rendering/playback: in the case of an OSC
bundle, this action by default will be a simple call to osc-send (as in
Figure 3).

Figure 4. DATA-STREAM: a container and editor/renderer for timed
data. In the patch at the top of the figure a sequence of dummy
OSC-BUNDLEs are generated and collected in the DATA-STREAM.
Visualization parameters for these bundles in the editor (size, verti-
cal alignment, colour) are either determined by searching for spe-
cific messages in the bundles (e.g. “/y”, “/size”), or just aleatory
(e.g. colours).

4.2 Handling o. Expressions in Visual Programs
The odot expression language support in OM consists of two main
features.

Formatting expressions using visual programs. A minimal set
of primitives in OM allows the user to format odot expressions
by evaluating a Lisp or visual program. The functions o.map,
o.lambda, o.call, o.delete, etc. produce formatted strings which
can be connected to each other in order to build the expressions.

Evaluating expressions. The odot language interpreter embedded
in the library is used to parse the textual expressions, and to apply
corresponding interpreted instructions to OSC bundles.

Figure 5 is an example of a simple odot expression built using an
OM visual program, and applied to an OSC bundle. The function
o.eval-expr evaluates the odot expression given as its first argument
(left inlet) on a bundle given as second argument (right inlet), and
returns a new bundle. Note that in this case, the body of the expres-
sion itself is in a message of the incoming bundle (“/myfunction”),
and o.eval-expr only evaluates the address binding this expression.

Figure 5. Construction and evaluation of an odot expression in an
OM visual program.

5. Examples of Structured-Functional
Communication with Real-time Media Systems

The usefulness of an expression language (odot) inside an other—
already domain-specific—functional language (OM) might not ap-
pear straightforward at first sight. It is actually interesting that this
simple expression language (as well that the format of the structures
it operates on) be shared by communicating applications, so that pro-
grams can be arbitrarily written and evaluated at the different points
of the communication within different environments and languages.
In this section we present two examples of such applications con-
necting the OM and Max environments. We believe however that this
approach can be generalised to other communicating frameworks.

5.1 Control of Spatial Audio Processing
This first example is based on a scenario previously studied in OM
and computer-aided composition projects, consisting of generating
spatial scene descriptions in OM, that are streamed to real-time sys-
tems in order to control spatial audio rendering (Bresson and Schu-
macher 2011). This use case often requires the encoding and stream-
ing of significant amounts of structured data (each virtual sound
source can be described by a large number of multi-dimensional
spatial and audio descriptors). Functional specification can optimize
the encoding of such spatial scene descriptions, especially in the
case where for instance the positions (or some other attributes) of
the sound sources are functionally related.

Let us take the example of a group of sound sources centred
around a given, mobile point in space. The number of sources
can be variable (and arbitrarily big) but the whole scene can be
described by a small and constant-size set of messages including

this number of sources, the central position of the group, and a
functional specification of the distribution of the sources around
this position. We may for instance represent a circular distribution
around the center with the following odot bundle:

Figure 6 shows an OM patch producing this kind of bundle.
Actually in this example, three different distribution functions are
provided, among which the receiver might be able to choose in order
to “unfold" the group of sources and get their actual positions. This
bundle is part of a lambda function (created by make-action) that
is attached to a 3D-curve as a “rendering action”. Figure 7 shows
the Max patch receiving the bundles produced by this action, and
decoding them by choosing among the three available functions,
then transmitting the unfolded data to the spat audio renderer and
graphical interface (Carpentier et al. 2015).

This architecture allows the receiver to dynamically change the
number of sources, the source distribution function, or any other
parameter prior to rendering. The example therefore illustrates
some notable features of the scripting language embedded in inter-
application communication protocols, such as:

• The reduced and constant size of the streamed bundles, allowing
to better control and deal with the bandwidth of transmission.4

• The possibility to write some interpretive instructions for the
streamed data in an environment, leaving some choice and
freedom to the receiver with regard to this interpretation.

5.2 Data Stream Visualization and Authoring
This second example goes the opposite way. Some data captured
from an incoming data stream (e.g. from real-time image processing)
is processed, sent out as OSC bundles and received in OM to be
stored, visualized and edited (and eventually played back again).

In this case functional specifications written in the odot ex-
pression language are used to complement the OSC bundles with
graphics-related elements computed frame-by-frame from the ini-
tial data. This allows the authoring of the mapping functions to be
undertaken in any of the environments at hand and applied at any
stage of the processing.

In Figure 8 incoming OSC bundles trigger reactive computations
of the OM visual program (Bresson 2014). Each incoming bundle is
transformed trough the application of a mapping function written
in odot, which adds “/nshapes”, “/y”, “/h” and a set of /nshapes
messages bound to addresses of the form “/shape/[i]/xyr”, each
specifying the position and radius of the shape #i. The processed
bundle is then added to the DATA-STREAM structure at the bottom
of the visual program, which will use these graphical attributes to
display a custom representation of the data (see Figure 9).

4 The conceptual compactness and space efficiencies afforded by embedded
programming languages have been demonstrated in different domain-specific
contexts before with PostScript for graphical rendering (Adobe Systems Inc.
1985) with Aegis (Blewett et al. 1985), NeWS (Gosling et al. 2014) and Java,
for client DOM interactivity and Lua (Ierusalimschy et al. 2007) for internet
server appliance configuration.

Figure 6. Formatting odot expressions and bundles in the rendering action for a 3D-curve in OM. The box make-action generates a lambda-
expression containing an osc-send call with the produced bundle from each successive point in the curve. On the right, one such bundle is
partially displayed for illustrative purpose (the bundles are actually created on-the-fly by the lambda-expression at rendering time).

Figure 7. Receiving OSC bundles from the 3D-curve playback (Figure 6). The selection and evaluation of one of the proposed odot functions
generate a set of sources distributed following a specific rule around a central position (/x, /y).

Additional features brought forward by this example are:

• The versatility of the representation, freely controlled and
adapted in either the sender or receiver part of the system
using the same language (one could also imagine a system of
switch between alternative representations, as presented in the
previous example).

• The possibility to control some aspects of the visualization from
a remote environment (where the original data comes from,
e.g. Max), without programming it (in this case, in Lisp) in the
authoring environment itself.

6. Conclusion
We have presented some applications of the odot framework and
expression language in the OpenMusic computer-aided composi-
tion and visual programming environment. Odot expressions oper-
ate directly on OSC-encoded representations of the data (the most
widespread format used in computer music) and can be embedded
in this format. In addition to structuring the communication between
environments by gathering full control statements instead of ex-
changing sparse control messages, OSC communication is therefore
enhanced by computational aspects and functional programming
expressivity.

We have shown in the presented use cases how declarative
functional descriptions can optimize the communication by reduc-
ing/containing the size of the transferred data, but also how they can
permit foreign environments to share program specification and exe-
cutions through a common language—an approach easily applicable
to other host frameworks and languages.

Acknowledgments
This project was carried out with funding and support from the
Fulbright Franco-American Commission and the French National
Research Agency (ANR) project with reference ANR-13-JS02-0004.
The authors would like to thank Rama Gottfried, Ilya Rostovtsev
and Jeff Lubow for their helpful support.

References
Adobe Systems Inc. Postscript Language Reference Manual (1st Ed.),

Addison-Wesley Longman Publishing Co., 1985.
C. Agon, G. Assayag, and J. Bresson, editors. The OM Composer’s

Book 1 & 2. Editions Delatour / IRCAM Centre Pompidou, 2006-2008.
G. Assayag, C. Rueda, M. Laurson, C. Agon, and O. Delerue. Computer

Assisted Composition at IRCAM: From PatchWork to OpenMusic.
Computer Music Journal, 23(3), 1999.

C. Blewett, A. Freed, J. Langer, R. Mascitti, C. Rodine, and W. Weber, The
Aegis System. AT&T Bell Labs Internal Memorandum, 1985.

D. Bouche and J. Bresson. Articulation dynamique de structures temporelles
pour l’informatique musicale. In Modélisation des Systèmes Réactifs
(MSR), Nancy, France, 2015.

J. Bresson. Reactive visual programs for computer-aided music composition.
In Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), Melbourne, Australia, 2014.

J. Bresson, C. Agon, and G. Assayag. Visual Lisp/CLOS Programming in
OpenMusic. Higher-Order and Symbolic Computation, 22(1), 2009.

J. Bresson and M. Schumacher. Representation and Interchange of Sound
Spatialization Data for Compositional Applications. In Proceedings of
the International Computer Music Conference, Huddersfield, UK, 2011.

J. Bresson, C. Agon, and G. Assayag. OpenMusic – Visual Programming
Environment for Music Composition, Analysis and Research. In
Proceedings of ACM MultiMedia (OpenSource Software Competition),
Scottsdale, USA, 2011.

J. Bresson and J.-L. Giavitto. A Reactive Extension of the OpenMusic Visual
Programming Language. Journal of Visual Languages and Computing,
25(4):363–375, 2014.

T. Carpentier, M. Noisternig, and O. Warusfel. Twenty Years of Ircam Spat:
Looking Back, Looking Forward. In Proceedings of the International
Computer Music Conference, Denton, USA, 2015.

A. Freed, J. MacCallum, and A. Schmeder. A Dynamic, Instance-Based,
Object-Oriented Programming in Max/MSP using Open Sound Control
Message Delegation. In Proceedings of the International Computer
Music Conference, Huddersfield, UK, 2011.

J. Garcia, P. Leroux, and J. Bresson. pOM: Linking Pen Gestures to
Computer-Aided Composition Processes. In Proceedings of the 40th
International Computer Music Conference (ICMC) joint with the 11th
Sound & Music Computing conference (SMC), Athenes, Greece, 2014.

J. Garcia, J. Bresson, and T. Carpentier. Towards Interactive Authoring
Tools for Composing Spatialization. In Proceedings of the IEEE 10th
Symposium on 3D User Interfaces, Arles, France, 2015.

J.-L. Giavitto. Du temps écrit au temps produit en informatique musicale. In
H. Vinet, editor, Produire le temps, Hermann, 2014.

J. Gosling, D. S.H. Rosenthal, and M. J. Arden, The NeWS Book: An
Introduction to the Network/Extensible Window System. Springer Science
& Business Media, 1989.

R. Ierusalimschy, L. H. de Figueiredo, and W. Celes, The evolution of Lua.
In Proceedings of the third ACM SIGPLAN conference on History of
programming languages, New York, NY, USA, 2007.

J. MacCallum, R. Gottfried, I. Rostovtsev, J. Bresson, and A. Freed. Dynamic
Message-Oriented Middleware with Open Sound Control and Odot. In
Proceedings of the International Computer Music Conference, Denton,
USA, 2015.

J. Nika, D. Bouche, J. Bresson, M. Chemillier, and G. Assayag. Guided
improvisation as dynamic calls to an offline model. In Proceedings of
the Sound and Music Computing conference (SMC), Maynooth, Ireland,
2015.

M. Puckette. Combining Event and Signal Processing in the MAX Graphical
Programming Environment. Computer Music Journal, 15(3), 1991.

M. Puckette. Pure Data : another integrated computer music environment. In
Second Intercollege Computer Music Concerts, Tachikawa, Japan, 1996.

M. Puckette. A divide between ‘compositional’ and ‘performative’ aspects
of Pd. In First International Pd Convention, Graz, Austria, 2004.

A. Schmeder and A. Freed. Implementation and Applications of Open Sound
Control Timestamps. In Proceedings of the International Computer
Music Conference, Belfast, 2008.

M. Wright. Open Sound Control: an enabling technology for musical
networking. Organised Sound, 10(3), 2005.

Figure 8. Receiving contour recognition data as OSC bundles in OM, on-the-fly application of a graphical mapping (odot function) and
storage in a DATA-STREAM.

Figure 9. Visualization of the OSC bundles received and processed in Figure 8 in the DATA-STREAM editor. The black circles, their position
and sizes are determined by the mapping programmed in the odot expression.

