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ABSTRACT
We present two complementary approaches for the visual-
ization and interaction of dimensionally reduced data sets
using hybridization interfaces. Our implementations privi-
lege syncretic systems allowing one to explore combinations
(hybrids) of disparate elements of a data set through their
placement in a 2-D space. The first approach allows for the
placement of data points anywhere on the plane according
to an anticipated performance strategy. The contribution
(weight) of each data point varies according to a power func-
tion of the distance from the control cursor. The second
approach uses constrained vertex colored triangulations of
manifolds with labels placed at the vertices of triangular
tiles. Weights are computed by barycentric projection of
the control cursor position.
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1. INTRODUCTION AND MOTIVATION
In this paper, we present two user interfaces for dimen-

sionality reduction. The first allows data points represented
by radial basis functions to be placed in a space and orga-
nized dynamically according to the goals of a given composi-
tion, musical performance, or pedagogical application. Sim-
ilar data points can be organized together, or data points
that will contribute to the same musical goal in a composi-
tion or improvisation can be placed near each other regard-
less of any judgement of their similarity.

The second method assigns the data points to the nodes
of a triangular mesh in an arrangement that ensures that
many transitions between combinations are available and
can be explored efficiently.

Hybridization interfaces are powerful tools for managing
the large and ever growing number of control variables avail-
able to the artist and performer working on image, motion,
and sound synthesis. Using these interfaces, we navigate
through a low-dimensional control space generating weights
to combine multidimensional parameter sets from a small
number of interesting data points. This approach is well
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known in image morphing [6], especially of faces, and has
been used widely for the interpolation of musical timbre,
meters, pitch spaces, and audio effects [12], [7] and [8]. We
use the term hybrid here as a way to place emphasis on the
new forms that arise as the user transitions from one data
point to another, rather than on the data points themselves.
We recognize, however, that a data point must be recover-
able without the influence of any other data points in the
space and ensure this is the case in both approaches that
we present.

An important concern for designers of new musical in-
struments for the control of software synthesizers is to ap-
proach the level of nuanced control that a performer has
when playing a traditional instrument. A violinist, for ex-
ample, can create extremely subtle variations in spectral
centroid, noisiness, and entropy by manipulating the bow
position, pressure, and speed respectively. Slight timbral
variations can also be produced by string choices and play-
ing certain pitches as harmonics. Other modal acts such as
the use of a mute (plastic, rubber, wood, leather, lead, etc.)
and bow choice allow the performer to alter the sound of
the instrument. With the computer, we are freed from the
constraints of a physical instrument and are able to sepa-
rate the interface from the sound source. A problem arises
as we attempt to map an interface to the many parame-
ters we wish to control. These mappings should occur in
such a way that is intuitive, while allowing the performer
to explore all possible combinations therein.

1.1 Interpolation Criteria
The majority of the interpolation properties presented

in Section 2 of [5] are also applicable here. In particular,
normalization is critical in audio applications where gain is
a factor. We also typically need an exact interpolator that
will allow us to visit a data point without the influence of
any other data points in the space.

2. SOFTWARE INTERFACE

2.1 Radial Basis Functions
Data points may be placed in the space and moved with a

pointer. Both the range of influence and the steepness with
which the influence rolls off take the form of two concentric
radii. In Figure 1, the steepness of the rolloff changes as the
inner radius increases. In the fourth image of Figure 1 the
inner radius has become larger than the outer radius, creat-
ing a null region where that data point has little influence
surrounded by a region of great influence.

In Figure 3, we have 50 points arranged randomly in the
space. By manipulating the values of the two radii, the
space can take on wildly different characteristics while the
data points remain at the same locations.
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Figure 1: Three points in the space with different values for the inner radius (r1) of the center (green) point.
A straight path from the center of the red point to the blue point generates the weights plotted against time
below.
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Figure 2: Three points in the space. By changing the position of the green point, different mixtures are
produced by taking the same path through the space.

2.2 Triangular Mesh
The triangular mesh arrangement of 3 points on the plane

seen in Figure 3.2 is both symmetric and periodic with re-
spect to the way that the space is filled. This offers the user
a more predictable layout in the space and ensures access to
many of the possible combinations and transitions between
them. This layout can be useful to explore combinatorially,
the relationships between elements of an unfamiliar data
set.

3. IMPLEMENTATION

3.1 Radial Basis Functions
Let L represent a layout given by a set of n data points

L = {Pi,pi, r1i , r2i , ci} for i = 1 . . . n (1)

where Pi ∈ Rm is the data value, pi ∈ Rd is its location in
d-dimensions; in 2-d, pi = (xi, yi). Typically, in the case of
dimensionality reduction, d � m. r1i and r2i are the two
radii that determine the values of α and β in equation 4,
and ci is the color of the data point in the space used for
drawing the visual representation.

The interpolation function is a map from Rd to Rm given
by

SL(q) =

n∑
i=1

wiPi (2)

where wi is the weight or contribution of each data point.
An important property of our model is that

n∑
i=1

wi = 1 (3)

Equation 2 is written as a linear combination of Pi, but this
hybridization can be generalized using any nonlinear mech-
anism that can be parameterized according to the definition
of w.

We compute the contribution wi of each data point Pi

wi =
1∑n
i=1 wi

(
n∑
i=1

αid
−βi
i

)
(4)

where

di = ||pi − q|| (5)

and || · || is the norm in Rd, e.g. the L2 norm in R2 is

||pi − q||2 =
√

(xi − x)2 + (yi − y)2. (6)

The norm can be used to change the shape of the area of
influence of a data point.

The values of αi and βi are derived from r1i and r2i

αi =

{
e, if r1i = 1, r2i > 1
1/e, if r2i = 1, r1i > 1

(7)



Figure 3: 50 points randomly positioned in the space with different settings of the inner and outer radii.
From top left to bottom right: 1. r1 = 0.05, r2 = 0.2 for all points. 2. r1 = 0.19 for the purple point circled in
the first image. 3. r1 = 0.19, r2 = 0.2 for all points. 4. r1 = 0.0005, r2 = 0.01 for all points. 5. The purple point
circled in the first image has been “inverted” (r1 = 0.474399, r2 = 0.469678). 6. Both points circled in the first
image have been “inverted” (yellow: r1 = 0.429808, r2 = 0.423348).

βi =


2

log r2i
, if r1i = 1, r2i > 1

− 2
log r1i

, if r2i = 1, r1i > 1
(8)

In the case where r1i < r2i , the contribution of a data point
approaches infinity as the distance decreases

lim
di→0

wi =∞. (9)

When r1i > r2i , the contribution of a data point approaches
infinity as the distance from it increases thus changing the
limit behavior of the model. This can be seen in Figure
1 where r1 of the central (green) point has become larger
than r2 in the three last images.

3.2 Triangular Mesh
Let M represent a triangular mesh layout given by a set

of n data points

M = {Pi,pi, ci} for i = 1 . . . n (10)

where the pi are constrained to lie on the points of a trian-
gular mesh in two dimensions.

The interpolation function at a point q is a combination
of the three nearest pi, {pt1 ,pt2 ,pt3}.

SM (q) =

3∑
i=1

λiPti (11)

where

λ1 + λ2 + λ3 = 1 (12)

and λi are the barycentric coordinates of q

λ1 =
(yt2 − yt3)(x− xt3)− (xt2 − xt3)(y − yt3)

det(T)
(13)

λ2 =
−(yt1 − yt3)(x− xt3) + (xt1 − xt3)(y − yt3)

det(T)
(14)

λ3 = 1− λ1 − λ2 (15)

where T is a matrix

T =

(
xt1 − xt3 xt2 − xt3
yt1 − yt3 yt2 − yt3

)
(16)

We can tell if a point is inside a triangle or on an edge if
0 < λi or 0 ≤ λi ≤ 1 ∀ i in 1, 2, 3 respectively.

3.3 Generalization of the Triangular Mesh to
Higher Dimensions

Goudeseune [3] (Section 4.2.2) points out that as the tri-
angle in R2 generalizes to a d-simplex in Rd, this triangluar
mesh generalizes to a simplical d-complex. In Rd where
d > 2, the irregular polyhedra required to tile the space im-
pose an asymmetric scaling in the mapping between the ges-
tures driving the cursor and the interpolation-weight space.
Devices such as the array of touch pads discussed below in
Section 4.1 possess such an asymmetry and thus are well-
suited to this type of extension. For devices such as the
GameTrak [2], however, a space tiled with nearly regular



Figure 8: Five points in the space—the center point
has been inverted so that it has little influence near
its center and dominates the space more as further
out.
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Figure 9: Weights corresponding to the path in fig-
ure 8.
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Figure 10: Triangle with Cartesian coordinates
above each point and barycentric points, which rep-
resent the amount of influence of each vertex, below.

3.2 Triangular Mesh
A point p located on a triangle described by vertices

v1, v2, and v3 that have Cartesian coordinates (x1, y1),
(x2, y2), (x3, y3), can be written as a weighted sum of the
vertices

p = λ1v1 + λ2v2 + λ3v3 (6)

where λ1 + λ2 + λ3 = 1 and are defined as the barycentric
coordinates of p

λ1 =
(y2 − y3)(x − x3) − (x2 − x3)(y − y3)

det(T)
(7)

λ2 =
−(y1 − y3)(x − x3) + (x1 − x3)(y − y3)

det(T)
(8)

λ3 = 1 − λ1 − λ2 (9)

where T is a matrix

T =

„
x1 − x3 x2 − x3

y1 − y3 y2 − y3

«
(10)

We can tell if a point is inside a triangle or on an edge if
0 < λi < 1 , or 0 ≤ λi ≤ 1 ∀ i in 1, 2, 3 respectively.

4. GENERALIZATION TO HIGHER DIMEN-
SIONS AND OTHER SURFACES

Goudeseune [3] (section 4.2.2) points out that as the tri-
angle in R2 generalizes to a d-simplex in Rd, this triangluar
mesh generalizes to a simplical d-complex. In Rd where
d > 2, the irregular polyhedra required to tile the space im-
pose an asymmetric scaling in the mapping between the ges-
tures driving the cursor and the interpolation-weight space.
Devices such as the array of touch pads discussed in section
5.1 possess such an asymmetry and thus are well-suited to
this type of extension. For devices such as the GameTrak
[2], however, a space tiled with nearly regular polyhedra as
proposed by Eppstein et al. [1] may be more appropriate.

The flat 2-D surfaces presented above can also be wrapped
around various solids such as a sphere or a torus which can
allow the user to revisit an area of the space without a
change of direction. One could imagine a monotonic pro-
cess that, once set in motion, would produce a periodic path

Figure 4: Triangle with Cartesian coordinates above
each point and barycentric points, which represent
the amount of influence of each vertex, below.
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Figure 5: A random walk through a space with 50
randomly placed prototypes. The numbers in this
figure correspond to the numbers along the x-axis
in figure 6.
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Figure 6: The weights as a function of time corre-
sponding to the random walk in figure 5.

Figure 7: Triangular mesh.

elements of an unfamiliar data set.

3. IMPLEMENTATION

3.1 Radial Basis Functions
To compute the contributions of each prototype centered

at points pi on a given point q

pi = (xi, yi),q = (x, y) (1)

we first compute the Euclidean distance between the two
points

d(pi,q) = ||pi − q||2 =
p

(xi − x)2 + (yi − y)2 (2)

and then scale that distance by a parameter αi and raise it
to a power βi.

wi =
1Pn

i=0 wi

 
nX

i=0

αid(p,pi)
−βi

!
(3)

The user interface presents the parameters αi and βi to the
user as two concentric circles (see figure 1). We compute αi

and βi from the radii of these circles as follows

αi =

(
e, if r1 = 1, r2 > 1

1
e
, if r2 = 1, r1 > 1

(4)

βi =

8
<

:

2
log r2

, if r1 = 1, r2 > 1

− 2
log r1

, if r2 = 1, r1 > 1
(5)

In this model, the contribution of a prototype approaches
infinity as the distance decreases, and the mixture converges
to the average at infinity.

An interesting emergent property of the system is that a
prototype can be effectively “turned inside out” by setting
α > β (or, from the user-interface perspective, making the
inner radius larger than the outer radius). This turns a
given prototype into a type of null space where its amount
of influence ranges from 0 to infinity as the distance from
the center increases thereby changing the limit behavior of
the model. Figures 8 and 9 show that the space in areas
where there should be even mixtures of multiple presets are
now dominated by the inverted prototype.

Figure 5: A layout of 3 data points on a trianglular
mesh.

polyhedra as proposed by Eppstein et al. [1] may be more
appropriate.

The flat 2-D surfaces presented above can also be wrapped
around various solids such as a sphere or a torus which can
allow the user to revisit an area of the space without a
change of direction. One could imagine a monotonic pro-
cess that, once set in motion, would produce a periodic path
through the space. Such a process could be useful for mod-
elling rhythmic processes.

4. APPLICATIONS

4.1 Implementation on an Array of Touch Pads
CNMAT has developed controllers based on pressure sen-

sitive 2-D touch pads [10], [11], and [13]. One such controller
uses 32 touch pads each of which can be used in a straight
forward manner as the pointing device for the interpolation
algorithms presented here. In elementary implementations
pressure is used to control the intensity and the results have

proven to be musically expressive.
In an effort to make more expressive use of pressure, we

developed a multilayered approach wherein each 2-D inter-
polation controller has some small number of spaces, usu-
ally two or three. We then select from those layered spaces
using pressure: a space containing low intensity material
will be selected with a light touch, and increasing pressure
will cause spaces with increasingly intense material to be
selected. This method allowed us to use the weights gener-
ated by the stacked spaces to create a smooth interpolation
associated with dynamics.

4.2 Research Applications
Wessel et al. developed a version of the radial basis func-

tion software as part of a project to optimize hearing aids
for music [14]. Subjects were presented with musical stimuli
and asked to adjust the compression and equalization. The
technical nature of the parameters made their adjustment
by subjects lacking a background in audio engineering im-
practical. By placing data points representing different con-
figurations of the compression and equalization parameters
into a 2-D space, subjects were able to easily and intuitively
explore the different settings.

5. CONCLUSIONS AND FUTURE WORK
We have presented two methods of dimensionality reduc-

tion for dealing with large sets of control parameters. One
approach offers the user flexibility with respect to spatial
layout, while the other imposes a regular tiling of the space
but offers the user a symmetrical and periodic arrangement
of the data points.

Dimensionality reduction implies that the set of all mix-
tures of parameters reachable through the interpolation
scheme is a d-dimensional manifold in Rn. This means that
not all combinations of data points are reachable. The tri-
angular mesh scheme presented above ensures that all com-
binations of up to three data points are reachable. The
radial basis function method does not ensure this for any
number of presets greater than one, although one could em-
ploy the tiling strategy of the triangular mesh to approxi-
mately reach all combinations of three data points.

In practice, certain data points may be judged to be simi-
lar to others in the space. In order to maximize the variation
of reachable mixtures through interpolation, the spacing be-
tween similar presets in the d-dimensional space should be
inversely proportional to similarity. For small numbers of
data points (e.g. fewer than 10), it is possible to create lay-
outs with this property manually, but for larger data sets,
optimization methods such as those suggested by [4] and [9],
can be used to lay out the space. Future work will include
the implementation of such optimized layout strategies.

As mentioned above, both of the methods we present
generalize to higher dimensions which makes them particu-
larly well-suited for use with >2-D controllers such as the
GameTrak and the Wii Remote. We are planning new
higher-dimension implementations of the techniques pre-
sented here. Since manual layout of a >2-D space can be
challenging, we will have to rely on optimization techniques
such as those mentioned above.
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