Dynamic Message-Oriented Middleware with Open Sound Control and Odot

John MacCallum!, Rama Gottfried!, Ilya Rostovtsev!, Jean Bresson?, and Adrian Freed!

ICenter for New Music and Audio Technologies, Department of Music, University of California, Berkeley,

john@cnmat .berkeley.edu,

rama.gottfried@berkeley.edu,

ilyaforpresident@berkeley.edu,

adrian@cnmat.berkeley.edu
2UMR STMS: IRCAM-CNRS-UPMC, Paris,
bresson@ircam. fr

ABSTRACT

We present recent work on odot, a system that extends Open
Sound Control and facilitates the rapid and dynamic con-
struction of Message-Oriented Middleware providing an in-
teroperability layer for communication between applications.
Unlike traditional middleware systems, odot, when embedded
in a host environment, provides a node where computation
can take place, allowing middleware to take shape dynami-
cally as the needs of the system develop.

1. INTRODUCTION

In the course of a complex design project we often encounter
the need to use multiple applications to satisfy a diverse set
of requirements. The work we present in this paper is de-
signed to facilitate the communication and interoperability of
a variety of software environments. Imagine constructing a
composition for instrumental ensemble with live electronics
in which we manage compositional structures in an offline
comositional environment like OpenMusic, ! build a system
for real-time electronics using Max/MSP? and a score us-
ing our favorite music notation editor or vector graphics soft-
ware. Sharing data between these applications is typically
be done by putting it in a file, either by hand or from within
the program, using an ad hoc format. In many simple cases,
this scenario is innocuous enough, however, these file formats
can grow in complexity to the point that they become a full
fledged language or encoding, albeit one which is often un-
specified and undocumented.

The above scenario could be greatly improved if the differ-
ent applications involved made use of a common data format
and we could dynamically construct middleware to provide
an interoperability layer between applications. In this paper,
we propose that Open Sound Control (OSC) is a suitable en-

! http://repmus.ircam.fr/openmusic/home
2 https://cycling74.com

Copyright: (©2015 John MacCallum et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License 3.0

Unported, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original author and source are credited.

coding, and the odot framework provides a set of tools for
constructing such a layer in a dynamic and agile fashion.

We begin with brief descriptions of Message-Oriented Mid-
dleware, OSC, and odot. We then discuss our ongoing work
to provide support for a variety of host and nested host envi-
ronments that can be made to communicate by passing OSC
between them. Finally, we conclude by discussing a number
of examples and future work.

2. OPEN SOUND CONTROL AND ODOT
2.1 Open Sound Control (OSC)

Open Sound Control[1][2][3] is a popular encoding in the
music and media/arts programming communities for moving
data between sensors and actuators, as well as processes and
threads on the same computer. It is extensible, has support
for a rich set of data types, and is relatively lightweight and
easy to implement.

OSC data is binary encoded and consists of messages that
bind addresses to data. Multiple messages may be times-
tamped and transmitted atomically by collecting them in a
bundle. Figure 1 illustrates the textual representation of an
OSC bundle using a JSON 3 -like syntax. The bundle con-
tains two messages, /a 1 and /b : [1, 2, 31,
and colons separate the addresses, /a and /b, from the data,
the integer 1, and the list [1, 2, 3].

{
/a 1,
/b : [1, 2, 3]

Figure 1. A human-readable representation of an OSC bundle.

2.2 libo

At the foundation of our current work is a C library called
libo that implements a superset of the OSC 1.0 specification *
with a set of extended types (see table 1). We refer to bundles

3 http://json.org
4 http://opensoundcontrol.org/spec-1_0

mailto:john@cnmat.berkeley.edu
mailto:rama.gottfried@berkeley.edu
mailto:ilyaforpresident@berkeley.edu
mailto:adrian@cnmat.berkeley.edu
mailto:bresson@ircam.fr
http://repmus.ircam.fr/openmusic/home
https://cycling74.com
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://json.org
http://opensoundcontrol.org/spec-1_0

Typetag | Description

h 64 bit big-endian two’s complement integer

H 64 bit unsigned big-endian two’s complement
integer

u 16 bit big-endian two’s complement integer

U 16 bit unsigned big-endian two’s complement
integer

c 8 bit big-endian two’s complement integer

C 8 bit unsigned big-endian two’s complement
integer

I 32 bit unsigned big-endian two’s complement
integer

d 64 bit (“double”) IEEE 754 floating point num-
ber

t OSC timetag (64-bit fixed-point NTP)

B odot bundle

A Executable code

T True (no bytes are allocated in the argument
data)

F False (no bytes are allocated in the argument
data)

N Nil (no bytes are allocated in the argument
data)

S Alternate string type represented as an OSC-
string

Table 1. Extended type support provided by libo.

that make use of this particular superset of OSC as odot bun-
dles. libo is a small, lightweight, sandboxed environment that
provides a set of low-level functions for constructing, query-
ing, and transcoding odot bundles. In this section, we de-
scribe those features of libo that facilitate its use as a tool for
communicating between diverse applications.

2.2.1 Platform Support

libo has support for a growing number of hardware architec-
tures and operating systems. Currently, it has been compiled
and tested on x86 (32- and 64-bit), and ARM architectures,
and runs under Mac OS X, Windows, Linux (tested on De-
bian and Ubuntu), Apple’s i0S.

2.2.2 Language Bindings

libo is written entirely in C and can be bound into any
language that supports a Foreign Function Interface (FFI).
Currently, we provide bindings to Javascript (Google V83),
Python, and Common Lisp (tested with LispWorks® and
SBCL7), all done with the Simplified Wrapper and Interface
Generator (SWIG). 8

For each supported language, the entirety of libo is ex-
posed providing developers with access to libo’s functionality

5 https://code.google.com/p/v8/
6 http://lispworks.com

7 http://sbcl.org

8 http://swig.org

through a familiar interface.

2.2.3 Transcoding

Transcoding between odot bundles and the human-readable
representation of the native data structure of a host language
or environment is essential for seamless interaction. Cur-
rently, libo provides partial support for transcoding to JSON,
SVG, and S-Expressions.

2.2.4 Timetags

An important feature of OSC bundles is the inclusion of a
slot for a timestamp in the header. In odot, the recommended
practice is to bind any timestamps to addresses that describe
their semantics. These timestamps are critical to any dis-
tributed system in which causal ordering, latency, and/or jitter
are important.

2.2.5 Expression Language

libo provides a parser and evaluator for a lightweight yet pow-
erful expression language that uses odot bundles as its funda-
mental aggregate data type. Since odot bundles can contain
code to be evaluated by this mechanism, each site that hosts
libo becomes a locus of computation for a language and data
structure shared between diverse applications.

2.3 Odot

Odot[4][5] is a framework for writing dynamic programs in a
host environment. It is constructed using the low-level build-
ing blocks provided by libo. In implementing odot for differ-
ent host environments, we promote idiomatic design specific
to the host, rather than the implementation of a uniform odot
interface. A minimal odot implementation provides abstrac-
tions for the bundle, message, and atom constructs, access to
the parsing, formatting, and evaluation functions, and func-
tions to convert the odot types listed in table 1 to and from
those native to the host environment. Beyond this minimal
set of features, an odot implementation may also provide any
number of additional features idiomatic to the host environ-
ment. For example, the o.route module for Max/MSP and PD
provides both conversion to native data types and ordered dis-
patch of messages typical of a dataflow environment. The de-
sign of this module is unique to these types of environments,
and the same functionality may take on a very different look
and feel in other hosts such as Python or JavaScript.

3. MESSAGE-ORIENTED MIDDLEWARE (MOM)

Message-Oriented Middleware (MOM)[6] is a general term
referring to infrastructure that enables message passing be-
tween parts of a system (figure 2). MOM emerged to support

Messages Message-Oriented

Middleware

| _Messages

Application A [« » Application B

Figure 2. Message-Oriented Middleware provides infrastructure to facilitate
communication between applications.

https://code.google.com/p/v8/
http://lispworks.com
http://sbcl.org
http://swig.org

the ever-growing scale of distributed systems and is largely
in response to the shortcomings of Remote Procedure Calls
(RPC)[7]. Where RPC is a) invasive, requiring deep coupling
with the host software, b) synchronous/blocking, which sub-
jects the performance of the system to that of the worst-per-
forming node, c) statically constructed, requiring great fore-
sight on the part of the RPC implementor, MOM provides a
more dynamic and flexible system of message passing that
allows different applications to be developed with minimal
consideration for interoperability.

In our work described in this paper, a host system need only
provide support for user add-ons via an SDK, or simply a
scripting language with a Foreign Function Interface (FFI);
odot’s expression language evaluator provides a node where
computation of code contained in the incoming data structure
may take place. We refer to our work as Dynamic Message-
Oriented Middleware to emphasize the fact that odot only
provides a computational node, but the code to be executed
may be constructed dynamically and on the fly in the context
of the data structure.

Conceptually, MOM allows different applications
to be thought of as actors in the Actor Model of
Computation[8][9]. In such a system, the sender and
receiver act asynchronously and concurrently. Messages
need not arrive in a specific order, but a mechanism must
be provided to ensure that they will execute in the cor-
rect order. OSC and odot support timetags and ordered
collections of messages allowing for the construction of a
model of time known as superdense time[10]. Superdense
time operationalizes the notion of multiple events occurring
simultaneously but in an explicit, causal order. All events are
timetagged with a pair (¢,n) where ¢ is the time, and n is an
index. Conceptually, two timetags (¢,n1) and (¢,ns) with
the same time but different indexes are considered to occur
simultaneously, however, their execution will be ordered
such that their causal relationship will be maintained, i.e.,
(t,n1) will be executed before (t,ns).

4. HOST ENVIRONMENTS

The low-level language bindings discussed in section 2.2.2
are the foundation for odot implementations in a variety of
host environments. Figure 3 shows the relationship between
libo, the host environments, and odot. On top of libo sits a
layer of shims created automatically by SWIG, or, in the case
of Max/MSP and PD, by hand and encapsulated in libraries
that rely on those environment’s SDKs. The shim layer ex-
poses all functions contained in libo to the host environ-
ment. A set of language bindings then abstracts away much of
that functionality and provides an idiomatic language-specific
interface with which we construct an odot implementation.
Here, we discuss the details of a number of odot implementa-
tions currently in development.

4.1 Max

In the Max/MSP implementation, all object names are pre-
ceded by the prefix “o.’. Odot bundles and messages

Host Environments: [Max] [PD] [Python] [Javascript] [Node.js] [Open MLISI(]

[Python] [] [CFFI(Lisp

)
Shim Layer: [hbomax] [libopd] [SWIG]
)

[libo

Language Bindings: Javascript

Figure 3. Bindings and host environments.

may be passed between objects by sending the message
FullPacket followed by two integers specifying the length
of the bundle in bytes and the address of the bundle (or mes-
sage) in memory. The remaining minimal functionality is
provided by the following objects:
Bundle FullPacket message
Message FullPacket message
Text Parser o.compose
Text Formatter o.print, o.display
Host to odot Transcoding o.pack, o.collect
Odot to Host Transcoding o.route, 0.atomize
Interface to the Expression Evaluator
0.expr.codebox

Below, we provide a number of notes and observations on

the implementation.

Implementation Details

Volatility Following the return of the outlet call, the bundle
that has been passed is typically freed unless the object
has some need to store it for future use.

Bundle Ownership An object receiving a FullPacket
message from another object is expected to copy it and
operate on that copy, i.e., an object must not alter a
bundle that it did not create.

Persistent Storage Given the volatile nature of bundles in
Max, persistence must be handled by special objects
that will make a copy of the bundle passed to them,
rather than objects (such as z1 reg) which copy the
Max FullPacket message containing a potentially
stale memory pointer.

Distributed Computation An important extension to the
OSC specification provided by odot is the addition of
a data type for representing code in the expression lan-
guage. This allows code to flow through a network of
Max objects and for the decoupling of the what and
where of evaluation. For example, one can specify ar-
eas in the dataflow graph where computation is to take
place without specifying what will be computed.

Interaction With the Host Environment The odot objects
are designed to leverage the host environment where
possible. To this end, most odot objects will interpret
Max messages that begin with a symbol preceded by
aslash (e.g., /foo 1 2 3)as an odot message, Fur-
ther, Max dictionaries containing key value pairs are
interpreted as odot bundles.

42 PD

Although Max and Pd have aspects of their ancestry in com-
mon, they have diverged in a number of important ways, no-
tably, their Graphical User Interfaces (GUIs), and the data
types they support. Although flext® is an excellent compat-
ibility layer for developing externals that work for Max and
Pd, it does not provide a comprehensive set of solutions for
our set of issues, and the constraints of its GPL license are
prohibitive.

Implementation Details

Pointer Representation In Max, OSC bundles are passed
between odot objects using the Ful1lPacket message
followed by the size of the OSC bundle in bytes and a
pointer cast to a long integer. However, the only nu-
meric data type available in Pd is a 32-bit float. To
work around this, on 32-bit architectures, we simply
reinterpret the bits of the floats, however on 64-bit ar-
chitectures, we must split the bits of the address into
two floats and output a FullPacket message with
three arguments, rather than two.

Inlet Proxy The Max API provides an inlet proxy that
greatly simplifies the handling of object methods across
multiple inlets and facilitates the creation of a number
of inlets not known at compile time. Since the Pd API
does not provide such a utility, we created a proxy class
which provides the functionality necessary for our code
to run unchanged.

Reserved Characters There are a number of characters that
are important in the odot expression language that may
not be used anywhere in the GUI such as {, }, and \.
Every character typed into the GUI is first filtered to re-
move special characters such as these, which have spe-
cial meaning to Tcl/Tk, and then passed to the Tcl/Tk
evaluator. Further, Pd patches are stored in plain text
with a syntax that makes use of certain characters used
in the expression language. As a workaround for both
of these issues, we simply encode the characters in hex-
adecimal.

Graphical User Interface Objects The odot library for
Max provides a small number of graphical objects for
displaying and creating bundles, as well as writing code
in the expression language. Since graphical code that
paints these objects is unique to the host environment,
it was necessary to supply new code for Pd’s Tcl/Tk
GUI. This was done through the creation of class called
opd_textbox that handles common interaction and
the majority of the object’s Tcl/Tk code. When a user
clicks on the GUI object, a new text widget is created.
To facilitate use of the editing utilities of the text wid-
get (undo, delete, etc.), we switch the Ul binding for the
mouse and keyboard actions so that these operations af-
fect the text being typed, not the object itself. Once the

9 http://grrrr.org/research/software/flext/

user finishes editing, the binding is returned to the main
Pd, canvas, the text is sent from Tcl/Tk via hex to the C
process where it is parsed, reformatted, and sent back
to Tcl/Tk for display as plain text within the object can-
vas. Custom graphics behavior for these objects can be
controlled by customizing the t_widgetbehavior
struct contained in the opd_textbox object.

4.3 Python

Python is a mature dynamic language with a heterogeneous
user-base of various disciplines. SWIG’s exposure of libo
to Python provides access to the C library calls. To conceal
the C interface of the library, we developed a set of Python
classes, defining a language-specific interface for working
with odot data. Currently, we support creation and manipu-
lation of odot messages and bundles, and provide a dedicated
structure for working with time tags.

Odot structures are iterable in Python—individual messages
in bundles and individual data members in messages can be
accessed using Python-specific iteration syntax. Addition-
ally, we provide efficient transcoding from bundles to Python
dictionaries. Since Python is a popular language for server
side applications, we also provide transcoding between odot
and JavaScript Object Notation (JSON), a lingua-franca data
structure of the web.

Our work with Python illuminated our designs for support-
ing odot as a data structure in textual languages. Since libo
was composed specifically in support of visual programming
environments, the Python library inspired an additional set of
features. Many of these features are applicable to other lan-
guages (particularly Java, C++, and JavaScript).

4.4 Javascript, Node.js, and Node-RED

There are many implementations of javascript—Google,
Mozilla, Apple and Microsoft all provide competing versions
of the dynamic language. Our current focus is to support
Google’s V8 due to its use in the Node.js server programming
environment.

4.4.1 Node.js

Node.js is a platform for building network applications. '

Currently, Node is a popular platform for server-side software
development. At the time of this writing, Node’s package
management database touts 123,512 total packages and over
42 million daily downloads. !' These packages cover a rich
set of web services and allow contemporary server program-
mers to integrate new technologies with ease.

Node can be installed on any computer, turning an ordinary
laptop into a web node capable of receiving and transmit-
ting network data. Node users write programs in JavaScript.
Under the hood, Node unites several technologies. The
javascript interpreter is Google V8 (Chrome JavaScript Run-
time), written in C++, one of the interpreters targeted by

10 http://modejs.org/
' https://www.npmjs.com/

http://grrrr.org/research/software/flext/
http://nodejs.org/
https://www.npmjs.com/

SWIG. Input and output is handled with libuv - a C library
for non-blocking input and output.

Node contributes an automatic integration of libuv into its
environment. Developers work with input and output with-
out worrying about the underlying mechanisms ensuring non-
blocking operation (threads). Node provides a set of helpful
extensions to JavaScript for server-side applications. For ex-
ample, Node’s Buffer is an efficient solution to dealing with
binary data in JavaScript.

C++ developers create addons for Node—dynamically
linked shared objects that can expose functions of low-level
libraries similar to Max/MSP external objects. > Prior to
May 2014, we exposed a subset of libo functionality with cus-
tom C++ code. As of May 2014, SWIG offers JavaScript as a
target, enabling libo integration workflow similar to Python.
Once installed, odot functions become available to developers
like any other Node module.

4.4.2 Node-RED

Node-RED, a product of IBM Emerging Technology Group,
is a graphical programming environment built on Node.js. '3
Node-RED provides an abstraction layer for hardware inter-
actions, web services, and APIs. Node-RED encapsulates
various services into graphical objects. The graphical ob-
jects enforce a particular standard for sending and interpret-
ing data. Users of Node-RED author complex server-side
behaviors by manipulating graphical objects within the web
browser editor. Commonly desired functionalities (e.g. ob-
taining data from an Arduino, interfacing with Twitter APIs)
are encapsulated for re-use without writing a single line of
code.

4.5 OpenMusic (OM) and Common Lisp

OSC has long been supported in the OpenMusic [11]
computer-aided composition environment via the cl-osc im-
plementation. 14 Tn this section, we describe recent work car-
ried out using the Common Lisp bindings to libo. This new
strategy improves the efficiency and reliability of the envi-
ronment with regards to OSC communication, ensuring the
support of up-to-date odot features and specs. Nested bundles
and the embedded expression language will allow to integrate
powerful/expressive data processing in interchange messages
and protocols.

OSC messages in OM are represented as simple lists, i.e.
with an OSC address followed by a sequence of arguments
(float or integer numbers, strings, etc.) The data types of the
arguments are therefore implicit and native to the Lisp envi-
ronment. Accordingly, an OSC bundle is a simple structure or
class (o.bundle) gathering a list of OSC messages and an op-
tional time-tag. This structure is straightforward to instantiate
and process either in Lisp or using graphical programming in
the compositional environment.

12 http://modejs.org/api/addons.html
13 http://modered.org/
14 https://github.com/hanshuebner/cl-osc

Currently, the intermediate-level functions constituting the
Common Lisp odot API in OM permit the following main
operations:

Creation of odot bundles from Lisp structures (o.bundles).
Every message in the o.bundle is converted to a C
pointer; a serialized bundle is created and returned.

Creation of odot atoms from Lisp data during message pro-
cessing and conversion. Adequate C constructors are
used according to the Common Lisp data types. If a
message argument is a nested list itself, the atom is cre-
ated as a nested bundle.

Decoding odot bundles into o.bundle instances, including
Lisp-formatted messages.

Reading/setting time-tags in odot bundles : efficient r/w
access preventing decoding/encoding in time manipu-
lations.

The libo interface is used to generate binary representations
from o.bundles, stored in foreign-allocated memory. It is
also used to read external (serialized) buffers to reconstitute
o.bundles. These serialized binary representations of OSC
bundles are the ones that are sent/received when sending odot
data via UDP. They can also be shared or passed as foreign
buffers in external applications or libraries (e.g. other C/C++
libraries linked to the Lisp environment).

Due to the cost of foreign memory copy and allocation in
Common Lisp, specific strategies must be adopted when such
foreign data is manipulated in the OM visual programs.

Depending on the context, we can therefore choose to:

1. make copies in each odor-related processing module,
which will prevent side effects and keep the system
clean and stateless. In this case, as with the Max and
PD implementations described above, the memory is
also freed explicitly in every module.

2. pass pointers around, taking care of restricting the func-
tional graphs to avoid multiple branching and prevent
undesired side effects. In this case we can rely on the
Lisp garbage collector in order to get the memory au-
tomatically freed when an o.bundle is cleaned up.

In addition to facilitating communication between OpenMu-
sic and other external environments, odot is used as a standard
framework for the communication with external libraries as a
way of integrating advanced audio processing and spatializa-
tion control in the compositional environment [12].

5. EXAMPLES

Here, we present two projects that exemplify as a common
data structure that facilitates communication between envi-
ronments.

http://nodejs.org/api/addons.html
http://nodered.org/

5.1 Data Visualization With Bokeh

Bokeh is a data visualization package for Python that targets
the browser and the HTML 5 canvas for rendering graph-
ics. !> Python code interacts with Bokeh objects and syn-
chronizes them with a server running in a separate process.
This server, in turn, stores the data sent to it in a key-value
store such as redis '® and uses javascript code running in the
browser to render the data in an HTML 5 canvas.

In a project for music and dance, the heart rates of the
dancers are measured by wearable electrocardiogram (ECG)
devices, and transmitted to a computer over Wi-Fi using an X-
OSC " module, and converted to click tracks to control the
tempo of the musicians in near real-time. The odot data trans-
mitted by the X-OSC module is processed in Max to produce
a click-track. The data, containing the results and intermedi-
ate data produced by the feature-detection phase, is then for-
warded from Max to Python code that unpacks the odot data,
adds it to the Bokeh objects, and updates the Bokeh server.

The design of the python code is notable in that it leverages
odot’s ability to defer computation to the site at which it is
needed. For example, given the example described above,
imagine that we would like to plot the logarithm of one of
the timeseries. Instead of performing that computation in
Max/MSP where resources might need to be reserved for
other tasks, we embed code into the odot bundle to be exe-
cuted upon arrival at the Python script. This allows us to make
changes dynamically without disturbing either environment,
and even allows the two environments to run on separate ma-
chines on a network.

5.2 Adobe Illustrator

Another project involves the interpretation of symbolic nota-
tion authored in Adobe Illustrator in a variety of rendering
contexts [13]. Utilizing the high level graphic design func-
tionality of Illustrator, the system enables the user to simulta-
neously create high quality scores and visualizations of infor-
mation and render their scores with other processes via OSC
transcoding. Rendering contexts could include be sonic, spa-
tial, kinetic, generative processes, or any process that is able
to receive OSC. The benefit of such a system is to allow com-
posers and other artists to find symbolic representation that
best suits the performances parameters. For example, repre-
senting time varying spatial information in computer music
is generally notated with univariate controls, splitting spatial
coordinates into multiple single values, whereas in symbolic
notation a 2D position can be clearly represented with a 2D
plot (within a given resolution).

The project uses Scalable Vector Graphics (SVG) as a in-
termediate file format, saved by Illustrator and converted into
OSC by a Max/Pd external (0.svg). The graphic information
is then processed by an interpretation algorithm which selects
temporal events and stores them in a table for lookup. The
playback is achieved by selecting a time point in the score and

15 http://bokeh.pydata.org/en/latest/
16 http://redis.io
17 http://www.x-io.co.uk/products/x-osc/

outputting the events at this time (within a given threshold).
The graphic parameters of the events (start and end positions,
radius, color, stroke type, etc.) are mapped to the parameters
of the output rendering process (amplitude, frequency, dura-
tion, modulation, etc.).

Adobe has recently announced Node.js support within Illus-
trator, allowing OSC to be sent directly from a script within
Ilustrator avoiding the need to use the intermediate SVG for-
mat. This interaction would facilitate being able to quickly
preview short sections of the score while composing, as well
as other interapplication possibilities.

6. CONCLUSION AND FUTURE WORK

Media/arts programming often requires the use of a number
of software environments during the creation and presenta-
tion of a work. We have presented a set of tools that facilitate
communication and interoperability between local and dis-
tributed software environments by providing a common data
structure and computational environment.

In the short term, we plan to complete the implementation of
the high level bindings for Javascript and Python upon which
many current projects depend. We also plan Java bindings in
order to target Processing '® and Ptolemy.

As stated in Section 4.5, OSC via libo/odot has been con-
sidered in recent OM developments for the dynamic commu-
nication with external libraries or applications. In this con-
text, several interfaces for the compositional specification,
scheduling and playback of control data will be developed, as
well as advanced tools for processing odot bundles, including
support for the odot expression language.

The two projects discussed in section 5 are under active de-
velopment and are expected to produce general all-purpose
tools for the communication and visualization of odot data.

Finally, we note that this recent work has put pressure on the
design of libo, exposing a number of underdeveloped areas of
its API. Current and future work involves improving the inter-
face to the library based on what we have learned through this
process in order to simplify future binding work and support.

Acknowledgments

This work was supported in part by the TerraSwarm Research
Center, ' one of six centers supported by the STARnet phase
of the Focus Center Research Program (FCRP) a Semicon-
ductor Research Corporation program sponsored by MARCO
and DARPA. The work on OpenMusic and Common Lisp
is related to the French National Research Agency project
ANR-13-JS02-0004.

18 https://www.processing.org
19 http://terraswarm.org

http://bokeh.pydata.org/en/latest/
http://redis.io
http://www.x-io.co.uk/products/x-osc/
https://www.processing.org
http://terraswarm.org

7. REFERENCES

[1] M. Wright and A. Freed, “Open Sound Control: A New
Protocol for Communicating with Sound Synthesizers,”
in Proceedings of the International Computer Music Con-
ference, 1997.

[2] A.Freed and A. Schmeder, “Features and Future of Open
Sound Control version 1.1 for NIME,” in Proceedings of
the New Interfaces for Musical Expression Conference,
2009.

[3] A.Schmeder, A. Freed, and D. Wessel, “Best practices for
Open Sound Control,” in Linux Audio Conference, 2010.

[4] A. Freed, J. MacCallum, and A. Schmeder, “Dynamic,
Instance-based, Object-Oriented Programming (OOP) in
Max/MSP using Open Sound Control (OSC) Message
Delegation,” in Proceedings of the International Com-
puter Music Conference, 2011.

[5] J. MacCallum, A. Freed, and D. Wessel, “Agile Interface
Development using OSC Expressions and Process Migra-
tion,” in Proceedings of the New Interfaces for Musical
Expression Conference, 2013.

[6] E. Curry, “Message-Oriented Middleware,” in Middle-
ware for Communications, Q. Mahmoud, Ed. John Wi-
ley and Sons, 2004, ch. 1, pp. 1-28.

[71 A. D. Birrell and B. J. Nelson, “Implementing Remote
Procedure Calls,” ACM Transactions on Computer Sys-
tems, vol. 2, no. 1, pp. 39-59, February 1984.

[8] C. Hewitt, P. Bishop, and R. Steiger, “A Universal Mod-
ular Actor Formalism for Artificial Intelligence,” in Pro-
ceedings of the International Joint Conferences on Artifi-
cial Intelligence, 1973.

[9] C. Hewitt, “Viewing Control Structures as Patterns of
Passing Messages,” in Journal of Artificial Intelligence,
1977.

[10] C. Ptolemaeus, Ed., System Design, Modeling, and Sim-
ulation using Ptolemy II. Ptolemy.org, 2014, ch. 1.7.2,

pp- 20-23.

[11] G. Assayag, C. Rueda, M. Laurson, C. Agon, and
O. Delerue, “Computer Assisted Composition at Ircam:
PatchWork & OpenMusic,” Computer Music Journal,

vol. 23, no. 3, 1999.

[12] J. Bresson, D. Bouche, J. Garcia, T. Carpentier, F. Jacque-
mard, J. MacCallum, and D. Schwarz, “Projet EFFI-
CACE : Développements et perspectives en composition
assistée par ordinateur,” in Journées d’Informatique Mu-

sicale, Montréal, Canada, 2015.

[13] R. Gottfried, “SVG to OSC Transcoding: Towards a Plat-
form for Notational Praxis and Electronic Performance,”
in Proceedings of the International Conference on Tech-

nologies for Notation and Representation, 2015.

	 1. Introduction
	 2. Open Sound Control and Odot
	2.1 Open Sound Control (OSC)
	2.2 libo
	2.2.1 Platform Support
	2.2.2 Language Bindings
	2.2.3 Transcoding
	2.2.4 Timetags
	2.2.5 Expression Language

	2.3 Odot

	 3. Message-Oriented Middleware (MOM)
	 4. Host Environments
	4.1 Max
	4.2 PD
	4.3 Python
	4.4 Javascript, Node.js, and Node-RED
	4.4.1 Node.js
	4.4.2 Node-RED

	4.5 OpenMusic (OM) and Common Lisp

	 5. Examples
	5.1 Data Visualization With Bokeh
	5.2 Adobe Illustrator

	 6. Conclusion and Future Work
	 7. References

