

DYNAMIC, INSTANCE-BASED, OBJECT-ORIENTED
PROGRAMMING IN MAX/MSP USING OPEN SOUND

CONTROL MESSAGE DELEGATION

Adrian Freed John MacCallum Andrew Schmeder
CNMAT

Dept. of Music
UC Berkeley, CA 94709

adrian@cnmat.berkeley.edu

CNMAT
Dept. of Music

UC Berkeley, CA 94709
john@cnmat.berkeley.edu

CNMAT
Dept. of Music

UC Berkeley, CA 94709
andy@cnmat.berkeley.edu

ABSTRACT

A new media programming style is introduced that
brings efficient run-time polymorphism, functional and
instance-based object-oriented programming to
Max/MSP and related visual dataflow languages.
Examples are presented to illustrate new, unusual and
effective applications of the approach of using OSC
messages for object representations and data flow for
method delegation.

1. INTRODUCTION

Open Sound Control (OSC) was originally designed as a
message-passing format to facilitate exchange of control
parameters between programs on different computers
across a network. Since its release in 1997 [1] OSC has
proven to be useful for message exchanges between
processes on the same computer system and more
recently within processing modules in the same program
[2]. This paper shows how OSC messages can provide
the missing element (composable, dynamic data types)
necessary to add object-oriented programming to
dynamic, visual dataflow languages such as Max/MSP
and PD.

1.1. History

The core data types in Max/MSP (i.e., numbers, strings,
and arrays) are typical of languages that were in
common use as far back as the 1950's, e.g. Fortran
(1957) and Algol (1958).Programs in Max/MSP are
expressed using the visual dataflow approach that was
first demonstrated in 1966 [3].

CNMAT’s limited use (1997) of OSC messages as an
aggregate datatype in Max/MSP [4] added what was
broadly available in the late 1950’s and 1960’s in the
form of “records” in Cobol (derived from FACT), the
“description lists” in IPL, then “property lists” in Lisp
and perhaps better known as the “records” of Pascal or
“structs” in C.

Regular expressions were designed into OSC originally
to facilitate dynamic message dispatch, a core idea in
Smalltalk (mid-1970’s). Few programmers exploited the
potential of using the Max external OSC-route and
regular expressions to implement dynamic object-

oriented programming in Max–presumably because of
the hegemony of statically-typed class-based object-
oriented programming invented in Simula (1962) and
still active in Objective-C, C++ and Java.

In 2007 the first author developed a suite of Max/MSP
patches, called “o.” (pronounced “Oh dot”). These were
specifically designed to exploit generic programming
(pioneered in Ada in 1980) to simplify and teach gesture
signal processing in physical computing contexts. This
early prototype explored the use of OSC (Sections 2-3
of this paper), ad-hoc polymorphism and delegation
(Sections 4 and 6) for dynamic class-less object-
orientated programming (OOP) based on his experience
developing music programs in prototype-based OOP
with the NewtonScript language [5]. With this early
library Max programming was possible using many of
the valuable new ideas in programming languages from
the mid-1980’s, e.g. Self [6] and now thoroughly
embedded in JavaScript (1995), for example.

In the course of developing an efficient
reimplementation of the “o.” suite as library in C, the
second author created a particularly compact way to
express unpacking and reassembling of OSC packets
within Max/MSP. Realizing this was a run-time
implementation of defunctionalization [7] we added
lambda lifting to transform closures (symbolic Max
object descriptions) into function objects [8]. The
construction of this machinery resulted in the primitives
necessary for functional programming in Max/MSP – a
key aspect of most programming languages developed
in the 1990’s. The important practical contribution in
“o.” implementation is that any Max patch or external
can be mapped or applied over pieces of an OSC packet
(As explained in Section 5).

We have started to explore applications of the freely
available “o.” library for gesture signal processing [9]
and for other musical applications such as the
customizable note editor of Section 9.

We have found the library to be valuable tool to
leverage the high degree of composability [17] that
emerges when delegation, aggregation and mapping
techniques of object-oriented programming are melded
to dataflow execution models.

2. MISSING TYPES

Max/MSP and PD are among the most popular
programming languages for media computing and
especially musical applications [10, 11]. An unfortunate
legacy of the early success of these programs is their
spartan support for data types and the lack of objects
and a composable and extensible type system. Although
type systems are harder to integrate into dataflow
languages than conventional compiled procedural
languages [12], theoretical and practical challenges for
this have been overcome [13, 14] as evidenced in
Ptolomy II.

The developer community has addressed the type
limitations of Max/MSP and PD by creating predefined
opaque data structures and collections of objects that
operate on them, such as Jitter and FTM [15]. The
provided types are domain-specific and not composable
into aggregate types. Users of these systems are required
to learn a large number of primitive operations that only
work on the new types. In these systems type
parameterization is narrowly confined to being able to
set the dimensions of predefined numeric matrix types
and neither first-class objects nor the primitives
necessary for dynamic object-oriented programming [6]
are provided.

Cycling74 has deferred the clean native integration of
aggregate data types, offering instead an integration of
Java and JavaScript into Max/MSP, thereby covering
both class-based and instance-based object-oriented
programming. This requires the learning of new
programming languages, and addressing their particular
scheduling and integration constraints. Lua integration
in Max/MSP has also been explored [16].

The solution advanced in this paper is to use Open
Sound Control messages and native Max/MSP patches
and externals to implement objects for dynamic,
instance-based object-oriented programming
(sometimes referred to as prototype-based
programming). Self [6], ECMAScript [17], JavaScript
and NewtonScript [18, 19] are examples of languages
using this classless programming style [20] [21] [22].

3. OSC MESSAGE FEATURES FOR TYPE
REPRESENTATION

The key idea of Open Sound Control is that user-chosen
names (“addresses”) are bound to data values. This is
more than just the old idea of naming variables: because
OSC messages move out of one program’s context
across a network into another’s, the name/value pairs
carry the meaning of the values to the destination. This
has great practical value to the programmer, and helps
with documenting complex systems. Bundles, the
second important idea in OSC, allow many name/values
pairs to be bound in a single, atomic structure. These
two ideas are sufficient to allow OSC bundles to

represent the property lists of Lisp, and SQL tables for
example. The ordering of name/value pairs in OSC
bundles is sufficient to represent the ordering
requirement of C structures.

Type tags are the third feature of OSC necessary to
support type introspection (a necessary feature for
polymorphism) and run time type checking in instance-
based programming. Also, type tags and predefined
endianness allow OSC messages to be mapped
unambiguously to C structures, C++, Java classes or
JavaScript objects.

4. OSC OBJECT CONSTRUCTION AND
DISPATCH

4.1. Introduction

In prototype-based object-oriented programming,
objects are created from scratch (ex nihilo), or by
cloning [23] and possibly modifying an existing
prototype object. We implement cloning by allocating
new memory and duplicating the contents of an OSC
message from the prototype object (in the spirit of Kevo
[24]). This implementation follows the convention of
Max primitive types, is easy to understand, avoids
atomicity issues and allows programs to be easily
distributed to multiple processors without the cost of
managing references [25]. For most OSC messages
memory is allocated on the call stack of Max object
outlet functions so the cost to allocate and free memory
is trivial and known in advance.

4.2. Terminology

For the rest of this paper objects built from OSC
messages will be referred to as “bundles” and each
member of the “o.” library will be referred to as a
“method”. This avoids confusions that might result from
the unconventional claim Max/MSP makes on the terms
“object,” and “message”. These are respectively
function and array in conventional (and ISO standard)
parlance. The spirit of using the terms “bundle” and
“method” is to help make this new dynamic object-
programming style accessible to both novice and
experienced Max/MSP programmers without being
burdened with the considerable baggage that comes with
the term “object”.

Note that OSC methods are signalled with the name
prefix “o.” as a simple way of establishing a clean name
space.

4.3. Ex nihilo object creation

The o.message method has the same user interface and
input syntax as the Max/MSP message box, providing a
constructor for an OSC bundle from a textual
description. Just as with the Max message box, Max’s
list constructor, a simple list selection template operator

is invoked using the “$1, $2,…$n” notation to describe
how selected values are to be placed in the bundle.

So the classic “hello world” program is implemented as
in figure 1.

Figure 1. Hello World.

Figure 2 better illustrates the dynamic list element
substitution familiar to message box users:

Figure 2. Bilingual Hello World

Figure 3 reflects a more interesting media programming
scenario

Figure 3. Remote Hello World

The last method in the chain results in the text
associated with the /english address being sent as a udp
packet to the 5007 port on the localhost server. The
compact, expressive power illustrated in this example is
an important feature of the ``o.'' library that will be more
fully explained in section 5.1 after the requisite
scaffolding has been described.

4.4. o.build

The o.build method collects values from its inlets and
binds them to the given OSC addresses in the spirit of
Max's pack object. It outputs the bundle on receipt of
the bang message or a value in its first inlet. Default
initial values may be provided after each address name
in the argument list as shown in Figure 4.

Figure 4. Building OSC Bundle associating values to
addresses.

Note the use of the second inlet of an o.message box to
view the contents of a bundle directly within a patch.

 Figure 5. Aggregating values into OSC bundles.

Figure 5 shows how o.build can be used to create an
interface to the Max keyboard slider that captures both
legacy representations of a music keyboard depression
as well as more contemporary ones. Note that bundling
the data from each keyboard slider outlet better reflects
the atomic binding of the two values implied by the
gesture that created them than sending them as separate
datum at different times out of separate outlets. This
common use of the o.build method is analogous to the
“named associations” style of Ada function call
arguments [26]. Instead of having to direct the right
parameters at the right time to the appropriate inlet,
parameters are named and bound together into a single
bundle. The advantages of this alternative to the
positional association style of Max/MSP are well
demonstrated in Jamoma [27] which adopts the
convention that OSC bundles are sent to the first inlet of
Jamoma modules.

Figure 6. OSC bundle from keyboard to synthesizer.

Figure 6 illustrates this bussing scheme and how
o.build’s complementary method o.route can be used to
bring values out of the OSC bundle into the Max/MSP

message world. Notice that the last outlet of o.route
outputs a new bundle containing the unmatched
elements of the original bundle. The “remainder” bundle
can be further processed as the patch evolves illustrating
the key to this delegation style of object-oriented
inheritance.

It is useful to contrast this approach with static class-
based inheritance. The key difference is that in the
delegation style new object types are created
dynamically by simply adding new address/value pairs
to existing objects. Programmers do not need to consult
object definitions or API’s to understand objects, their
derivatives and promises: they simply look at the data in
the objects themselves as they are formed and reformed
as they move through the patch.

Section 6 includes further discussion of delegation-style
inheritance.

5. Making OSC methods from Max patches

Instead of creating a large number of new objects to
operate on OSC bundles it is possible to reuse existing
Max/MSP externals and patches using function-
mapping approaches that are analogous to “map” and
“apply” from Lisp. The o.call object instantiates a Max
patch internally according to its arguments and then
routes named messages from incoming OSC packets to
the internal Max patch. Finally it gathers the output into
an OSC bundle.

Figure 7. Keyboard Synthesizer with o.call data flow.

Figure 7 illustrates o.call implementing a refined version
of the keyboard synthesizer patch of Figure 6.

The o.call method uses prefix and suffix operators so it
is syntactically closer to Lisp and other functional
languages than to C. To clarify subsequent examples we
note that the argument list comes first followed by the
function description (a Max patch which o.call
dynamically instantiates). Finally there may be closing
attributes following an @ symbol. These are used to
describe what to do with the results of the function call

mapping. By default the result is bound to the same
name as the first argument pattern. @as is followed by
the names to be assigned to new elements that will be
added to the incoming bundle. @prepending specifies a
prefix to be added to the address of the first argument.

The value to the Max/MSP programmer of this
machinery is that only a handful of new “o.” methods
are needed to bring object-oriented and functional
programming into Max/MSP and no changes to the
Max/MSP kernel are required. Operations on the values
stored in OSC bundles can be done with existing
externals and abstractions including all the basic
arithmetic and symbolic operations, the zl list objects
and JavaScript. Examples are illustrated in Figure 8.

Figure 8. o.call examples using core Max functions.

6. Delegation-style Inheritance

The example in Figure 7 has been augmented in Figure
9 with the feature of pitch-dependent panning to
illustrate how delegation can be used to add
functionality to programs in a way that promotes reuse
(the core benefit of object-oriented programming).

Figure 9. Delegation-based Inheritance.

The /pan message is computed from the /midi/pitch
message and added to the existing bundle. This is
analogous to inheritance in class based object-oriented
programming. The key to reuse is that neither the
original patch assembling the description of the
keyboard gesture nor the synthesizer need any changes
to support the new /pan parameter. The additional sound
functionality is added by using the delegation outlet
(conventionally the rightmost) of the synthesizer patch.
These new functionalities can of course be encapsulated
as required. Note that the /pan route operation delegates
its unmatched bundle output inviting future inheritance.

7. External Sources and Sinks of OSC Bundles

External sources and sinks of OSC data include the
venerable udpsend and udpreceive objects and slipOSC
for serial wrapped OSC (typically from USB serial
devices).

The new o.io method renders these Max functions
obsolete by enumerating and wrapping data from all the
core I/O subsystems of OS/X computers as OSC
messages. This wrapping function is already partially
met with programs such as Osculator
(www.osculator.net/) and Glovepie (glovepie.org).
Unfortunately there is measurable and potentially
troublesome variance in the delay of messages via these
programs. The o.io method minimizes these by time
tagging the data using the lowest level API to get as
close as possible to the actual time the data was
acquired. The o.io method already supports core popular
protocols HID, UDP, TCP, MIDI, serial and proprietary
API’s such as the one provided for the built-in laptop
motion sensors and multitouch trackpads. The
implementation of o.io was carefully designed for
extensibility so that new API’s and device types can be
easily added. Bundles from o.io typically contain the

raw data from the API and then one or more overlays of
interpreted data according to the device. For example
the HID protocol API provides numbered parameter
values as the core data stream. The o.io method consults
an XML file that describes how to build a symbolic
address space from these numbered parameters
according to the device and vendor id.

8. OSC Bundle Methods

Certain operations on bundles are clumsy to do by
breaking them up into Max/MSP native types and
reassembling them with o.build. These include merging,
unions, intersections and accumulation for which the
o.var method is provided. The o.if method is interesting
in that it only inspects the contents of a bundle thereby
avoid a copy operation as it directs the bundle out of the
“true” or “false” outlet according to the evaluation of
the conditional expression.

The factorial calculation of figure 10 illustrates o.if in
action and how recursion is compactly done with “o.”
methods.

Figure 10. Recursion and o.if

The evolving state of this computation is traceable by
simply collecting the bundles recursively passed back.
The concentration of observable state into bundles turns
out to be a very productive programming technique,
minimizing bugs that are hard to find because of state
hidden within Max externals and patches. OSC time
tags can be used in these traces for performance
profiling. In the recursive implementation of the
factorial function the “o.” calls correspond directly to
the mathematical definition and all the mathematical
operations are explicit. In the iterative version of Figure
11 implicit functionality of the “uzi object” is assumed
to be understand as reflected in the different behaviour
of each outlet.

Figure 11. Factorial by Iteration

1! = 1, n! = n(n− 1)!

9. Music Notation Editor Example

Figure 12. o.grandstaff

Figure 12 shows a musical notation editor called
o.grandstaff for Max. This example will serve to
amplify the earlier points of the paper and place them in
a more sophisticated musical context.

With the o.grandstaff visual method notes are entered by
pointer and keyboard, or by sending the method OSC
bundles containing certain core addresses such as
"/pitches" and "/time."

The use of OSC bundles allows for the storage of any
additional data alongside the core addresses for which
the object has methods to interpret. This extensibility
allows the composer to build personal elaborations of
notation dynamically.

Figure 13: Bundle with extra notation

In figure 13, for example, commands destined for the
synthesizer have been added to the bundle along with a
message to be printed in the Max window.

Although the synthesizer attached to the patch of Figure
13 may not yet be capable of implementing the high-
level description of an envelope such as "/attack tenuto,"
the message may still be added to the bundle to record
the composer's intention. Until the synthesizer is
elaborated the extra information will be stored but
ignored.

Sound synthesis and processing algorithms often require
care in the order in which parameters are updated. Since
o.grandstaff outputs OSC bundles, all control

Figure 14. o.grandstaff with Synthesizer

parameters are delivered atomically to o.route which
dispatches them according to the order of its arguments
(right to left, following Max programming convention).

The ability to associate the state of the instrument
(synthesizer) that will play a note with the pitch to be
played is closely related to traditional music notation in
which timbral and dynamic information is placed near a
given note. In figure 15 the lowest note of the first chord
in figure 14 is shown in music notation.

Figure 15. Sul pont. notation

The OSC message "/gain" is encoded as the forte
dynamic, "/articulation tenuto" appears as a tenuto mark
below the notehead, and the "/brightness" message is
analogous to the sul ponticello indication.

Note that no intermediate representation (such as MIDI
sequencer piano roll) is required or desired in this
notation/synthesis system where the two components are
coevolved in the course of each composition.

10. Conclusion

With the “o.” library OSC messages are more than
simply a new aggregate type for Max/MSP. They
represent the glue necessary to integrate modern
functional and object-oriented programming styles into
a visual, dataflow language. Furthermore the time tags,
atomicity and ordering semantics of OSC bundles
promote productive development necessary for reactive
media programming.

11. Dedication to Max Mathews

We dedicate this paper to the memory of Max Mathews
who started us all out on computer languages for music
and who mentored and inspired three generations of
exciting work.

12. Acknowledgements

We gratefully acknowledge the support and
encouragement of the McEnerney Endowment, Meyer
Sound Laboratories, Pixar/Disney, the Concordia
University Faculty of Fine Arts and the Concordia
Specialized Individual Program (SIP) for
interdisciplinary study.

13. Bibliography

[1] Wright, M. and Freed, A. Open Sound Control: A New
Protocol for Communicating with Sound Synthesizers.
International Computer Music Association, City, 1997.
[2] Wright, M., Freed, A., Lee, A., Madden, T. and Momeni,
A. Managing Complexity with Explicit Mapping of Gestures to
Sound Control with OSC. International Computer Music
Association, City, 2001.
[3] Sutherland, W. R. The On-Line Graphical Specification of
Computer Procedures. Massachusetts Institute of
Technology., 1966.
[4] Wright, M., Wessel, D. and Freed, A. New Musical
Control Structures from Standard Gestural Controllers.
International Computer Music Association, 1997.
[5] Smith, W. Class-based NewtonScript programming. PIE
Developers1994).
[6] Ungar, D. and Smith, R. Self: The power of simplicity.
ACM, City, 1987.
[7] Reynolds, J. Definitional interpreters for higher-order
programming languages. Higher-order and symbolic
computation, 11, 4 1998), 363-397.
[8] Johnsson, T. Lambda lifting: transforming programs to
recursive equations. Springer, City, 1985.
[9] Freed, A. M., J.; Schmeder, A. Composability for Musical
Gesture Signal Processing using new OSC-based Object and
Functional Programming Extensions to Max/MSP. In
Proceedings of the NIME 2011 (OSLO, 2011)
[10] Magnusson, T. and Hurtado, E. The Phenomenology of
Musical Instruments: A Survey. eContact! , 10.42008).
[11] Magnusson, T. and Mendieta, E. The acoustic, the digital
and the body: A survey on musical instruments. ACM, City,
2007.
[12] Xiong, Y. and Lee, E. An Extensible Type System for
Component-Based Design. Springer Berlin / Heidelberg, City,
2000.
[13] Lee, E. and Xiong, Y. System-Level Types for
Component-Based Design. Springer Berlin / Heidelberg, City,
2001.
[14] Lee, E. A. and Xiong, Y. A behavioral type system and its
application in Ptolemy II. Formal Aspects of Computing, 16, 3
2004), 210-237.
[15] Schnell, N., Borghesi, R., Schwarz, D., Bevilacqua, F.
and M¸ller, R. FTMóComplex data structures for Max.
Citeseer, City, 2005.
[16] Wakefield, G. and Smith, W. Using lua for audiovisual
composition. City, 2007.
[17] Hansen, L. Evolutionary Programming and Gradual
Typing in ECMAScript 4 (Tutorial).
[18] McKeehan, J. and Rhodes, N. Programming for the
Newton: software development with NewtonScript. Academic
Press Professional, Inc. San Diego, CA, USA, 1995.
[19] Smith, W. SELF and the Origins of NewtonScript. PIE
Developers magazine, July1994).
[20] Smith, R. B. Prototype-based languages (panel): object
lessons from class-free programming. In Proceedings of the
Proceedings of the ninth annual conference on Object-
oriented programming systems, language, and applications
(Portland, Oregon, United States, 1994). ACM.
[21] Noble, J., Taivalsaari, A. and Moore, I. Prototype-Based
Programming: Concepts, Languages and Applications.
Springer, 1999.
[22] Dony, C., Malenfant, J. and Bardou, D. Classifying
Prototype-based Programming Languages. Prototype-based
Programming: Concepts, Languages and Applications,
(1998).

[23] Taivalsaari, A. Delegation versus concatenation or
cloning is inheritance too. SIGPLAN OOPS Mess., 6, 3 1995),
20-49.
[24] Taivalsaari, A. Kevo, a prototype-based object-oriented
language based on concatenation and module operations.
Report LACIR, 92-02.
[25] Levanoni, Y. and Petrank, E. An on-the-fly reference
counting garbage collector for Java. ACM, City, 2001.
[26] Taft, S. and Duff, R. Ada 95 reference manual: language
and standard libraries: international standard ISO/IEC 8652:
1995 (E). Springer Verlag, 1997.
[27] Place, T. and Lossius, T. Jamoma: A modular standard
for structuring patches in Max. City, 2006.

