
Composability for Musical Gesture Signal Processing
using new OSC-based Object and Functional

Programming Extensions to Max/MSP

Adrian Freed
CNMAT

Dept. of Music
UC Berkeley

adrian@cnmat.berkeley.edu

John MacCallum
CNMAT

1750 Arch Street
Berkeley, CA 94709

johnmac@berkeley.edu

Andy Schmeder

CNMAT
1750 Arch Street

Berkeley, CA 94709
schmeder@berkeley.edu

ABSTRACT
An effective programming style for gesture signal processing is
described using a new library that brings efficient run-time
polymorphism, functional and instance-based object-oriented
programming to Max/MSP. By introducing better support for
generic programming and composability Max/MSP becomes a
more productive environment for managing the growing scale
and complexity of gesture sensing systems for musical
instruments and interactive installations.
Keywords
Composability, object, Open Sound Control, Gesture Signal
Processing, Max/MSP, Functional Programming, Object-
Oriented Programming, Delegation

1. INTRODUCTION
Open Sound Control (OSC) was originally designed as a
message-passing format to facilitate exchange of control
parameters between programs on different computers across a
network. Since its release in 1997 [16] OSC has proven to be
useful for message exchanges between processes on the same
computer system and more recently within processing modules
in the same program [17]. This paper shows how OSC
messages can be used to provide composable, dynamic data
types, to support generic, object-oriented and functional
programming styles in dynamic, visual dataflow programming
languages such as Max/MSP and PD.

2. Composable Aggregate Types
Max/MSP and PD are among the most popular programming
languages for media computing and gesture signal processing
for musical applications [6, 7]. An unfortunate legacy of the
early success of these programs is their spartan support for data
types and the lack of objects and a composable and extensible
type system. These limitations are particularly problematic for
the NIME community as projects increasingly involve complex
gestural signal processing flows for large numbers of
heterogeneous sensors and actuator types.
 The solution advanced in this paper is to use Open Sound
Control messages and native Max/MSP patches and externals
to implement objects for dynamic, instance-based object-
oriented programming (sometimes referred to as prototype-

based programming). Self [15], ECMAScript [4], Javascript
and NewtonScript [8, 12] are examples of languages using this
programming style [1, 9, 11].
 The ideas introduced here are embodied in a freely available
collection of Max/MSP externals and patches known as the “o.”
library (pronounced “Oh dot”). We demonstrate applications of
this library and new, productive programming techniques that
leverage the high degree of composability [2] that emerges
when delegation, aggregation and mapping techniques of
object-oriented programming are melded to dataflow execution
models.

3. OSC Object Construction and Dispatch
3.1 Introduction
In prototype-based object-oriented programming objects are
created from scratch (ex nihilo) or by cloning [14] and in some
languages modifying an existing prototype object. The “o.”
library uses the cloning approach, allocating new memory,
copying the contents of an inbound OSC message and
modifying and adding to the copy as required (in the spirit of
Kevo [9]). This approach follows the convention of Max
primitive types, is easy to understand, avoids atomicity issues
and allows programs to be easily distributed to multiple
processors without the cost of managing references. It also
invites a pure functional programming style with the well-
known advantages of minimizing hidden state or stored values.
 The conceptual steps from class-based object-oriented
programming (OOP) to what we are doing with OSC here are
small: concatenation of objects is sufficient for inheritance [9]
and objects can serve as their own type definitions [5].

Figure 1. Aggregating values into OSC bundles.

3.2 Example
Figure 1 shows how o.build is used to create an interface to the
Max keyboard object (kslider) that captures both legacy
representations of the depression of a key on a musical
keyboard as well as more contemporary ones. Bundling the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME’11, 30 May–1 June 2011, Oslo, Norway.
Copyright remains with the author(s).

data from each outlet of the kslider better reflects the atomic
binding of the two values implied by the gesture that created
them than sending them as separate data at different times out
of separate outlets. This common use of the o.build method is
analogous to the “named associations” style of Ada function
call arguments [13]. Instead of having to direct the right
parameters at the right time to the appropriate inlet, parameters
are named and bound together into a single bundle. This
alternative to the positional association style of Max/MSP is
also exploited in Jamoma [10].
 The o.route method complements o.build to bring values out
of the OSC bundle into the Max/MSP message world. Notice
that the last outlet of o.route outputs a new bundle containing
the unmatched elements of the original bundle. The
“remainder” bundle can be further processed as the patch
evolves–the essence of this delegation style of object-oriented
inheritance. It is useful to contrast this approach with static
class-based inheritance. The key difference is that in the
delegation style new object types are created dynamically by
simply adding new address/value pairs to existing objects.
Programmers do not need to consult object definitions or API’s
to understand objects, their derivatives and promises: they
simply look at the data in the objects themselves as they are
formed and reformed using, for example, the gray UI Max
object o.message which is analogous to the Max message box.
 Just as Max wiring simulates physical wiring, OSC building
and routing simulates scalable strategies used for wiring
complex physical world systems, i.e. the labelling, color
coding, bundling and bussing of wires.

4. Making OSC methods from Max patches
Using function-mapping approaches that are analogous to
“map” and “apply” from Lisp, existing Max/MSP externals and
patches can operate on data in OSC bundles. This eliminates
the need for a large number of new speciality operators to be
introduced and learned.
 The most common scheme for this is implemented in the
o.call method. This Max object instantiates a max patch
internally according to its arguments and then routes named
messages from incoming OSC packets to the internal max
patch. Finally it gathers the output into an OSC bundle. Figures
1 and 2 illustrate this for various common scaling operations
with floating-point division and the mtof (midi to frequency)
function.
 The o.call method uses prefix and suffix operators so it is
syntactically closer to Lisp and other functional languages than
to C. To clarify subsequent examples we note that the argument
list comes first followed by the function description (a Max
patch which o.call dynamically instantiates). Finally there may
be closing attributes following an @ symbol. These are used to
describe what to do with the results of the function call
mapping. By default the result is bound to the same name as the
first argument pattern. @as is followed by the names to be
assigned to new elements that will be added to the incoming
bundle. @prepending specifies a prefix to be added to the
address of the first argument. These various conventions will be
liberally used in the following examples.

5. Delegation-style Inheritance
In Figure 2 the example of Figure 1 has been augmented with
the feature of pitch-dependent panning to illustrate how
delegation can be used to add functionality to programs in a
way that promotes reuse (the core benefit of object-oriented
programming).

Figure 2. Delegation-style inheritance.

 The objects in the top most grey box create a new bundle that
includes the contents of the incoming bundle adding a new /pan
value computed from the pitch in the incoming bundle.
 The key to reuse is that neither the original patch assembling
the description of the keyboard gesture nor the synthesizer need
any changes to support the new /pan parameter. The additional
sound functionality is added by using the delegation outlet
(conventionally the rightmost) of the synthesizer patch. These
new functionalities can of course be encapsulated as required.
Note that the /pan route operation delegates its unmatched
bundle inviting future inheritance.

6. External Sources/Sinks of OSC Bundles
External sources and sinks of OSC data include the venerable
udpsend and udpreceive objects and slipOSC for serial-
wrapped OSC (typically from USB serial devices).
 The new o.io externals replace these Max functions by
enumerating (o.io.discover) and wrapping (o.io) data from all
the core I/O subsystems of OS/X computers as OSC messages.
This sort of wrapping functionality is already partially
addressed by programs such as Osculator (http:/osculator.net/)
and Glovepie (http://glovepie.org). Unfortunately there is
measurable and potentially troublesome variance in the delay of
messages via these programs. The o.io object minimizes these
by time-tagging the data using the lowest-level APIs to get as
close as possible to the actual time the data was acquired. The
o.io method already supports core popular protocols HID, UDP,
TCP, MIDI, serial and proprietary API’s such as the one
provided for the built-in laptop motion sensors and multitouch
trackpads.
 The o.io method was carefully designed for extensibility so
that new API’s and device types can be easily added. Bundles
from o.io typically contain the raw data from the API and then
one or more overlays of higher-level interpreted data according
to the device. For example some HID protocol devices provide
entries in a table with useful names to substitute for the
parameter numbers of the core data stream.

6.1 OSC Bundle Methods
Certain operations on bundles are clumsy to do by breaking
them up into Max/MSP native types and reassembling them
with o.build. These include merging, unions, intersections and
accumulation for which the o.var method is provided. The o.if
method is unusual in that it only inspects the contents of a
bundle thereby avoiding a copy operation as it directs the
bundle out of the “true” or “false” outlet according to the
evaluation of a conditional expression.

Figure 3. Recursion and o.if

 The factorial calculation of Figure 3 illustrates o.if in action
and how recursion is compactly done with “o.” methods. Note
that the evolving state of this computation is traceable by
simply collecting the bundles recursively passed back. The
concentration of observable state into bundles turns out to be a
very productive programming technique, minimizing bugs that
are hard to find because of state hidden within Max externals
and patches.

7. Gesture Signal Processing with “o.”
This section elaborates a complete gesture signal processing
application by analysing the patch of figure 4 from top to
bottom:

Figure 4: Feature Extraction

The source of analysed gesture data is a popular controller for
experimental music called the Gametrak [3]. It provides data
from the unwinding of retracting cords passing through the
centers of a pair of joysticks. In the following sections we will
trace the series abstractions encountered as packets move from
top to bottom in this patch.

7.1 Situate
The HID encoding of values from the Gametrak is designed
according to the viewpoint of the inventors of HID and their
imagined uses for the Gametrak. We use the term “situate” to
refer to the process of complementing this deferred agency of
the hardware builders with the meaning the user of the
Gametrak and Max
patch can attribute
according to their
immediate situation. In
the example shown this involves renaming.
The appearance of x,y,z suggests the user’s comfort with
cartesian coordinate conventions. Another user might prefer the
terms NS, WE, and Extension.

7.2 Neutralize
The value stream from this device (as with MIDI) confronts us
with particular implementation choices: integers and the
domain 0-4095. We neutralize this using the unit intervals [0-1]
or [-1 1], the latter being useful in this case to represent
directional deviations from the center of the joystick. These
intervals are easy to scale by multiplication.
 Regular expressions are used to
match both the left and right
addresses and to precisely call out
a different range for x or y, or z.

This demonstrates the value of dynamic method routing and a
surprising conciseness. The combination of wiring and patterns
takes care of what is typically done more verbosely in lexical
programming languages using terms such as lambda, self,
this,or with.

7.3 Display
The named sliders displaying some of the values in the
neutralized packet (in Figure 4) were built using o.multislider
implemented using the same functional programming strategies
of o.call while in addition tiling out the user interface.

7.4 Calibrate
Here we “taint” the domain of the neutralized gesture
measurements by mapping them to a calibrated frame with
extension in meters and positions as angles. We use the
“prepending” attribute to add this interpreted value to the
neutralized one rather than replace it.

 This is an example of designing for reuse–a key aspect of
composability. This calibration increases the potential for
future reuse of the OSC packet (i.e. the object) without
requiring knowledge of this future and without imposition of a
complex interface.

7.5 Fuse
A simple sensor fusion is performed by combining the x,y axis
data to create a radius and rotation. These are added to the copy
of the incoming bundle.

7.6 Feature Detector
This feature detector computes the direction of a “stirring”
gesture on the left string of the Gametrak. The algorithm is
simply to look at the sign of the derivative of the rotation of the
gesture. The first step is to use o.remember to build a packet
containing the incoming packet and its predecessor. The
elements of these two packets are distinct because the name
“/was” is prepended to all the data in the old bundle. This
avoids the complexity of the classical alternative: pointers or
references. The difference operator is simply composed from
Max/MSP’s subtraction primitive:

To complete the account here is the window function at the end
of the feature detector:

 So far none of state of this computation is hidden. It is all
available and traceable in the OSC bundles themselves.
Although o.remember has to store a bundle internally, the
stored contents are added to every outgoing bundle and flagged
with the “/was” prefix. In the novelty detector of the next
section we will stray slightly from this purely, functional
approach but in a way that is still manageable.

7.7 Novelty Detector
The basic algorithm is to clip the difference between the radial
position of the left string and its median value inside a short
sliding window.

As is typical of these simple detectors the threshholds of
detection need to be adjusted using, for example, o.multisliders
as a source of parametric control:

Here is the simply novelty detector calculation:

8. BlackBoxing
Hiding implementation details in modular, black boxes is a
very effective technique but of little use unless the interfaces
are documented. Our concatenating approach is interesting in
that the name spaces can be designed so that the data itself
emerging from the boxes describes the interface The packet
emerging from the bottom of the example patch illustrates this.

9. Conclusion
With the “o.” library OSC messages
are more than simply a new
aggregate type for Max/MSP. They
represent the glue necessary to
integrate modern functional and
object-oriented programming styles
into a visual, dataflow language.
Furthermore the time tags, atomicity
and ordering semantics of OSC
bundles promote productive
development necessary for gesture
signal processing and other reactive
media programming applications.

10. Future Work
The “o.” library has the foundational
components to bring most modern
programming paradigms to
Max/MSP. Notable exceptions to this
are reflectivity and parallelism. These
both require significant changes in
the Max kernel.

11. Dedication to Max Mathews
We dedicate this paper to the memory of Max Mathews who
started us all out on computer languages for music and who
mentored and inspired three generations of exciting work.

12. Acknowledgements
We gratefully acknowledge the support and encouragement of
the McEnerney Endowment, Meyer Sound Laboratories,
Pixar/Disney, the Concordia University Faculty of Fine Arts.

13. Bibliography
[1] Dony, C., Malenfant, J. and Bardou, D. Classifying Prototype-based Programming Languages. Prototype-based Programming:

Concepts, Languages and Applications, 1998.
[2] Elliott, C. An embedded modeling language approach to interactive 3D and multimedia animation. Software Engineering, IEEE

Transactions on, 25 (3). 291-308, 1999.
[3] Freed, A., McCutchen, D., Schmeder, A., Skriver Hansen, A.-M., Overholt, D., Burleson, W., Norgaard Jensen, C. and Mesker, A.

Musical Applications and Design Techniques for the Gametrak Tethered Spatial Position Controller SMC 2009, 2009.
[4] Hansen, A.-M.S., Overholt, D., Burleson, W. and Jensen, C.N. Pendaphonics: a tangible pendulum-based sonic interaction

experience Proceedings of the 3rd International Conference on Tangible and Embedded Interaction, ACM, Cambridge,
United Kingdom, 2009.

[5] Lieberman, H. Using prototypical objects to implement shared behavior in object-oriented systems. ACM SIGPLAN Notices, 21
(11). 214-223, 1986.

[6] Magnusson, T. and Hurtado, E. The Phenomenology of Musical Instruments: A Survey. eContact! , 10.4, 2008.
[7] Magnusson, T. and Mendieta, E., The acoustic, the digital and the body: A survey on musical instruments. in, (2007), ACM, 94-

99.
[8] McKeehan, J. and Rhodes, N. Programming for the Newton: software development with NewtonScript. Academic Press

Professional, Inc. San Diego, CA, USA, 1995.
[9] Noble, J., Taivalsaari, A. and Moore, I. Prototype-Based Programming: Concepts, Languages and Applications. Springer, 1999.
[10] Place, T. and Lossius, T., Jamoma: A modular standard for structuring patches in Max. in Proceedings of the 2006 International

Computer Music Conference, (2006).
[11] Smith, W. Class-based NewtonScript programming. PIE Developers, 1994.
[12] Smith, W. SELF and the Origins of NewtonScript. PIE Developers magazine, July, 1994.
[13] Taft, S. and Duff, R. Ada 95 reference manual: language and standard libraries: international standard ISO/IEC 8652: 1995

(E). Springer Verlag, 1997.
[14] Taivalsaari, A. Delegation versus concatenation or cloning is inheritance too. SIGPLAN OOPS Mess., 6 (3). 20-49, 1995.
[15] Ungar, D. and Smith, R., Self: The power of simplicity. in, (1987), ACM, 227-242.
[16] Wright, M. and Freed, A., Open Sound Control: A New Protocol for Communicating with Sound Synthesizers. in International

Computer Music Conference, (Thessaloniki, Hellas, 1997), International Computer Music Association, 101-104.
[17] Wright, M., Freed, A., Lee, A., Madden, T. and Momeni, A., Managing Complexity with Explicit Mapping of Gestures to Sound

Control with OSC. in International Computer Music Conference, (Habana, Cuba, 2001), International Computer Music
Association, 314-317.

