

Agile Interface Development using OSC Expressions
and Process Migration

John MacCallum
CNMAT - UC Berkeley

Dept. of Music
1750 Arch Street

Berkeley, CA 94709
john@cnmat.berkeley.edu

Adrian Freed

CNMAT - UC Berkeley
Dept. of Music

1750 Arch Street
Berkeley, CA 94709

adrian@cnmat.berkeley.edu

David Wessel

CNMAT - UC Berkeley
Dept. of Music

1750 Arch Street
Berkeley, CA 94709

wessel@cnmat.berkeley.edu

ABSTRACT
This paper introduces “o.expr,” an expression language for
dynamic, object- and agent-oriented computation of gesture
signal processing workflows using OSC bundles. The use of
o.expr is shown for a range of gesture processing tasks. Aspects
of o.expr, including statelessness and homoiconicity, simplify
agile applications development and provide support for
heterogeneous computational networks.
Keywords
Gesture Signal Processing, Open Sound Control, Functional
Programming, Homoiconicity, Process Migration.
1. INTRODUCTION
We introduce a new tool “o.expr” for functional programming
of gesture signal processing algorithms as the main workhorse
of the “o.” toolkit [5]. o.expr evaluates C-like expressions that
contain OSC addresses as variable names. Earlier versions of
“o.” were embedded in the Max/MSP/Jitter language and relied
on this host language to provide the computational heavy lifting
using the o.callpatch primitive [5]. o.expr removes this
dependency on a particular programming language and enables
efficient implementation of gesture signal processing
workflows as composable transformations of OSC messages
into new OSC messages [16].
 “o.expr” contributes the following to gesture signal
processing applications:

 increased reliability and legibility by supporting a
stateless functional programming style,
 support for a different models of gesture signals via

OSC time tags including: band-limited isochronous
sampling, Address Event Representations (AER) [4] and
compressed sensing,
 dynamic binding of gesture signal processing

algorithms to gestural data allowing processing to be
delegated to the most efficient node in a computational
network via safe, sandboxed process migration, and
 use of self description to minimize stateful registries,

discovery protocols and the need for third-party “calls
home”.

2. PRIOR WORK
Our work is part of a recrudescence of extensive work started in
the 1980s on User Interface Management Systems [2, 14].
Attenuation of development of these early experimental
systems arose when computers became more affordable and
spread from specialized academic laboratories to the office and
home. The workstation and personal computer industry
normalized device choice and user interfaces, integrating them
into proprietary operating system API’s. Device
communication protocols were also normalized into vendor-
controlled protocols such as USB-HID and MIDI. These
protocols did not evolve fast enough to accommodate new
device technologies and user applications areas such as gaming
and interactive installations, growing niches that are now
occupied by both vendor- and user-controlled protocols and
encodings such as OSC and TUIO.
 Most of the specialty languages that were developed as part
of the early UIMS’s were compiled and much of the work
focused on mapping problems between well-established
gestures in GUI’s and fixed application functions. One
interesting experimental language from this period, Squeak [3]
managed concurrency in multiple input devices. A more recent
representative device-specific language is Proton++ for
multitouch gesture mapping [6]. Our work complements these
languages by providing the computational machinery to move
from sensed input to reliable, calibrated parametric tracking of
gesture parameters and feature detection.
 Various parameter mapping systems have been proposed for
music controller applications [10] based on efficiently encoding
a few commonly used mapping strategies. The o.expr language
we present takes a more general approach to mapping and
makes the functional mappings explicit and accessible to users.

 A striking trend in recent NIME projects is an increase in the
number of processing components that handle data flowing
from sensor to sound output. The following scenario is not
unusual: a single chip 9DOF IMU connected to an ARM-based
Arduino (Teensy 3), connected via USB to a smartphone that is
wirelessly connected to a laptop computer running sound
synthesis software. A popular single chip IMU from Invensense
actually contains an ARM processor to perform sensor fusion
computations. This means that sensor data passes through three
ARM processors before sound computations on a final
multicore processor. This is typical of a general trend towards
rich, complex networks of heterogeneous computation now
studied under the rubrics of Cyber Physical systems [7] and
material computation [13]. The heterogeneity of these
computing elements increases development cost and time

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME’13, May 27-30, 2013, KAIST, Daejeon, Korea.
Copyright remains with the author(s).

because of the number of different development tools that are
in play. One early attempt to address this [1] uses a single
powerful FPGA development tool for a range of computational
structures. Another approach [12] embeds a flexible executive
in the sensor/actuator controllers so that development can be
unified using OSC messages. These approaches work well
within an institution that can impose a particular development
discipline. The approach introduced here has greater potential
for larger collaborative projects between individuals and
institutions by reducing dependences on the capabilities of
particular computational nodes.

3. PAPER STRUCTURE
We begin by outlining the features of o.expr's C-like language.
We will then present o.expr in the context of several, compact
gesture signal-processing examples typical of NIME
applications. We conclude with examples of how o.expr
expressions themselves can be stored, manipulated, and
transmitted as OSC data.

4. O.EXPR SYNTAX AND SEMANTICS
4.1 Introduction
Modules of the “o.” library implement a dynamic object-
oriented programming model with specialization provided for
by cloning instead of delegation or subclassing. OSC bundles
serve as objects and are the only native data structure in “o.”.
OSC bundles are general enough to represent aggregate data
types similar to the “struct”s of C or objects of Javascript where
members of the aggregates are named, typed vectors of
primitive data: integers, floating point numbers, times and
strings.
 Cloning avoids the complication and statefulness of
references and garbage collection and, while it is a less
commonly used method of implementing dynamic objects than,
for example, the delegation style used in Javascript, it has been
extensively studied and has a long history of use [8, 9] [15].
 Because of the simple semantics of cloning, the basic
computational model of each “o.” module is that they emit
modified copies of incoming OSC bundles. We will now focus
on the most important “o.” module, “o.expr” which provides a
rich expression language for specification of computations with
OSC messages.

4.2 OSC Addresses as Arguments
Expressions in o.expr define the order of evaluation of nested
primitive functions and also name the sources of argument
values for these functions using OSC address names. At
evaluation time the incoming OSC bundle is copied to the
working bundle, and the nested functions are computed using
operand values referenced by address name from the working
bundle. Assignment functions bind their operands to addresses
in the working bundle. The last step of o.expr is to output the
working bundle. For example, in the following expression

/foo = /bar + 10
10 will be added to the value (or list of values) addressed as
/bar in the working OSC bundle. The result will be bound to the
address /foo. If /foo already had a value defined in the working
bundle, that value will be replaced by the results of the
expression.

4.3 Scalar and Vector Operations
In the case where an address is bound to a list of values (a
vector), o.expr will apply a given function to every member of
the list. When more than one vector argument is found, the
function will be applied to the first n items of all lists, where n
is the length of the shortest list. Finally, in the case of a

mixture of vectors and scalars, scalars are promoted to lists
containing n copies of the scalar value.
 Elements of a list may be retrieved using a special double-
bracket notation: /foo = /bar[[10]]

 In the above example, the 11th element of /bar (counting
from 0) will be assigned to /foo. Multiple indexes may be
accessed using comma-separated values: /foo[[1, 2, 3]], or by
using an address bound to an integer or a list as the parameter:
/foo[[/bar]].

4.4 Intrinsic Functions and Constants
Constants are implemented as intrinsic functions with no
arguments, i.e., pi(), and e().
 In addition to the standard arithmetic and logical operators as
well as the majority of the functions declared in the C library’s
math.h file, o.expr provides useful built-in functions such as
cumsum() (cumulative sum), sum(), product(), dot() (dot
product), sign() (the sign of its argument), clip(), scale(), mtof()
(MIDI to Hz), ftom() (Hz to MIDI), reverse(), sort(), nfill()
(create a list of n copies of a value), aseq() (create an arithmetic
sequence), interleave(), length() (the number elements bound to
an address), mean(), median(), l2norm(), range() (the difference
of the maximum and minimum of a list), extrema() (the
minimum and maximum of a list).
 Also provided are predicates such as bound() that check to
see if an address is present in a bundle, exists() that returns true
if the address is present in the bundle regardless of whether it
has data bound to it, and emptybundle() that returns true if the
bundle contains no messages and false otherwise.
 A list of the addresses present in the bundle can be created
with getaddresses(), a list of typetags present in a message with
typetags(), and the number of messages present in the bundle is
returned by getmsgcount().
 Finally, type casting may be achieved through a number of
functions such as float32(), uint64(), char(), string(), etc.

4.5 List Construction
Lists may be constructed using the list() function, or by placing
comma-separated values in single square brackets:

/foo = [1, 2, 3]
 When an address is encountered as an element within the
square brackets, it will be expanded, e.g., consider the message
/foo 1 2 3. The expression /bar = [a b /foo c] will result in the
message /bar a b 1 2 3 c.

5. Functions, Variables, and Statelessness
5.1 Anonymous + Higher Order Functions
o.expr provides intrinsic higher-order functions such as apply(),
map(), lreduce() (left-reduce), rreduce() (right-reduce), all of
which take a function as their first argument. Summing a list of
numbers, for example, can be accomplished using lreduce() and
the functional form of the addition operator as the first
argument

In addition to intrinsic functions, these higher-order functions
support anonymous (lambda) functions in a style similar to Lisp
and Python. In the following example, we take a list of data
bound to the address /list and map an anonymous function onto
it that will assign each element to a unique address.

 This expression uses the functional form of the assignment
operator assign() which allows us to specify the assignment
target as the result of an expression. The opposite may be
accomplished in a similar fashion by calling getaddresses() to
get the list of addresses present in the bundle and mapping over
them.

The getaddresses() intrinsic function returns a list of strings and
the values()s function which is mapped onto that list takes a
string and treats it like an address, returning the data bound to it
if it exists in the bundle.

5.2 Named Functions
We can create named function definitions simply by binding
strings representing anonymous functions to addresses. In the
following example, we define four shaping functions as strings
bound to descriptive addresses (/linear, /exponential,
/logarathmic, and /sigmoid) and assign one of those addresses
to an address called /shapefn which represents the function to
be applied to our data. We then blend those definitions in to
the stream of data coming from o.io.scaledmouse, effectively
creating a closure. The chosen function is then applied to the
mouse data.

5.3 Unbound Addresses
Since OSC data is not known at the time the expression in
o.expr parsed, it is possible that an address in the expression
will not be found at evaluation time, or that the address could
be contained in the bundle, but not associated with any data. In
the current implementation, the execution of the expression is
halted and the input bundle is copied through unaltered. Thanks
to the helpful suggestion of Sha Xin Wei, we are exploring the
possibility of changing this behavior to propagate the part of
the expression that can’t be evaluated, i.e. adopting the lazy
evaluation model. Such an approach can be found in
Mathematica.
 We also provide a null-coalescing operator similar to that
found in C#: /foo = /bar ?? 10 which means “/foo is assigned
the value of /bar if /bar exists, and 10 otherwise.''

5.4 Statelessness
An important feature of o.expr is that it is stateless—any state
necessary to evaluate an expression, must be contained in the
bundle that is sent to the instance of o.expr that will perform the
evaluation. No state is retained for use by a computation on
subsequent OSC bundles.
 This property is valuable for the following reasons:

 The bundle can be sent to any environment that
implements o.expr and the results are completely
dependent on the contents of the OSC bundle, i.e., there
can never be a situation where the user sends a bundle to
an instance of o.expr and the results will be unknown
because some state of o.expr is unknown.

 One can record a series of OSC bundles, either bundles
that would be sent to o.expr, or bundles that have been
processed by o.expr, and interpret the contents without
having to know what state the object was (or would have
been in) when the bundle was processed.

 Regression and unit testing of o.expr functions is
simplified because only input/output pair comparison is
needed

6. GESTURE SIGNAL PROCESSING
EXAMPLES
The following example snippets feature the Max/MSP/Jitter
implementation of “o.expr”. To follow the narrative the most
important thing to know about Max/MSP/Jitter itself is that
OSC bundles flow from outlets at the bottom of boxes into the
inlets at the top, i.e. the usual arrows found in dataflow
diagrams are omitted and messages “fall” from top to bottom
on the page.

6.1 Definition
Before we start looking at the examples it is useful to consider
what we mean by “gesture signal processing”. We use the term
“signal” in its mathematical sense of “function of time,” and
“processing” to both capture the notion of computation and
evoke related workflows such as Digital Signal Processing or
Image Processing.
 It is challenging to arrive at consensus on what a gesture is or
how to rigorously define the term “gesture.” We will sidestep
this issue in a productive way by using an operational
definition: gesture is the outcome of these signal-processing
computations. An important result of this decision and an
important contribution of this paper beyond the o.expr tool
itself is that we embrace both parametric estimation of
continuous gesture (e.g. their prosody) and the recognition and
identification and classification of gesture where “signal” is

interpreted as a stream of discrete signs, i.e. as semiosis. We
will see both senses of gesture represented in the examples.

6.2 Feature Filtering
This pipeline processes the OSC bundles that represent the state
of a dancer’s body as seen from a Kinect and represented by
skeletonization machine vision software.

The first step selects OSC bundles that represent the dancer’s
right hand being above a certain height with respect to their
body centroid. The second line selects bundles containing hit
events that were identified earlier in the pipeline using feature
detection on low velocities. The final step scales an estimate of
hit intensity and assigns it to a new name “/impulse” which will
inject energy into a resonator bank when received by the OSC-
wrapped sound synthesizer later in the chain.

6.3 Coordinate transformation and filtering

The first two predicates check for valid data from the
skeletonizer and whether there is a dancer in its field of view. A
new parameterization of the space is created that transforms the
depth data into a unit interval (-1,1) form to be consistent with
the other axes and also finesse the impact of options now
available to change the size of this viewport with lenses for the
Kinect.

6.4 Managing Statefulness
This component of a novelty detector works by computing the
change in current value of a parameter (a radial distance) with
the running median of prior values. Since o.expr is stateless, a
mechanism of the host language (zl stream) is used to compute
a list constituting the sliding window of values.

7. DEFERRING AND DELEGATING
COMPUTATION
In addition to the usual design constraints of computational
performance and algorithm choice, NIME applications
involving multiple, specialized processors require attention to
the geography and topology of the computations themselves.
The “o.” dynamic programming model provides an agent-
oriented approach to addressing these questions. Of particular
value is the separation in location of the description of a
computation and its execution. This is evident with the
workflow and requirements of calibration. Calibration data is
best colocated physically with the sensor so that they move
together and devices can be seamlessly moved to other
computational nodes. Otherwise elaborate discovery and
registry schemes have to be developed to uniquely identify the
sensor so that the correct calibration data can be attributed to
raw data streams. One advantage however of the latter

approach is that it can more easily support new calibration
strategies and repurposing developed after the initial
deployment of the sensor. This is not an unusual situation and
has been observed in commercial applications such as the Wii
Remote and academic explorations [11].
 Since o.expr expressions themselves can be stored as strings
of text or tokenized lists, they can be associated with addresses
and stored in OSC bundles. This property, known as
homoiconicity, allows “o.” objects such as “o.expr” to modify,
create and execute o.expr expressions.
 Using this property both calibration data and a description of
the calibration computations can be stored with the sensor and
sent with the measurands to be used later down the computation
chain where a sufficiently fast processor will be available. In
addition to calibration computations, the sensor subsystem can
include predicates for sensor validation and characterization to
be computed on demand down stream.
 We illustrate this with an example from a fingerboard
controller that uses the duotouch technique to sense the position
of touch at two points along a linear resistive strip:

The microcontroller computes the length of the strip

dynamically using current-steering networks so that length can
be expressed ratiometrically minimizing the usual problem of
temperature dependence with resistive sensing. The application
computations are more easily done with floating point
operations normalized in the unit interval but the
microcontroller managing the sensing has no native floating
point computational units. The OSC bundle it produces therefor
contains a description of the normalization computation that is
deferred to the o.expr eval(/normalize) operation in Max/MSP.

The validation parameter expresses a basic range
constraint and the impossibility that the sum of the lengths of
the touch point from each end of the strip could exceed the total
length of the strip.

8. CONCLUSION AND FUTURE WORK
As we move large gesture signal processing applications

from Max/MSP/Jitter patches into o.expr we are observing that
“o.” implementations are simpler more concise and easier to
understand, due in part to the lack of hidden state which
plagues complex Max patches. This comes from the self-

documenting nature of OSC messages and the thorough
implementation of list processing in o.expr. We have also had
positive experiences teaching gesture signal processing with
o.expr.

We are actively supporting integration of “o.” into new
host programming environments such as PD, Processing and
Python. We have recently added new functions to o.expr to
support efficient computations with time stamps rendered
sufficiently generally to support good time engineering practice
as reflected in IEEE1588.

9. ACKNOWLEDGMENTS
We would like to thank Jeff Lubow and Rama Gottfried for
their extensive testing and exploration of “o.” This work was
supported by Meyer Sound, Pixar/Disney, and the Canada
GRAND project and by the TerraSwarm Research Center, one
of six centers supported by the STARnet phase of the Focus
Center Research Program (FCRP) a Semiconductor Research
Corporation program sponsored by MARCO and DARPA.

10. REFERENCES
[1] Avizienis, R., Freed, A., Suzuki, T. and Wessel, D. Scalable
Connectivity Processor for Computer Music Performance
Systems. International Computer Music Conference. 523-526,
2000.
[2] Buxton, W., Lamb, M.R., Sherman, D. and Smith, K.C.
Towards a comprehensive user interface management system.
SIGGRAPH Comput. Graph., 17 (3). 35-42, 1983.
[3] Cardelli, L. and Pike, R., Squeak: a language for
communicating with mice. in, (1985), ACM, 199-204.
[4] Culurciello, E., Etienne-Cummings, R. and Boahen, K.
Arbitrated address-event representation digital image sensor.
Electronics Letters, 37 (24). 1443-1445, 2001.
[5] Freed, A., MacCallum, J. and Schmeder, A. Dynamic,
Instance-based, Object-Oriented Programming in Max/MSP
using Open Sound Control Message Delegation ICMC 2011,
ICMA, 2011.

[6] Kin, K., Hartmann, B., DeRose, T. and Agrawala, M.
Proton++: A Customizable Declarative Multitouch Framework
UIST 2012, 2012.
[7] Lee, E.A., Cyber physical systems: Design challenges. in
Object Oriented Real-Time Distributed Computing (ISORC),
2008 11th IEEE International Symposium on, (2008), IEEE,
363-369.
[8] McKeehan, J. and Rhodes, N. Programming for the
Newton: software development with NewtonScript. Academic
Press Professional, Inc. San Diego, CA, USA, 1995.
[9] Noble, J., Taivalsaari, A. and Moore, I. Prototype-Based
Programming: Concepts, Languages and Applications.
Springer, 1999.
[10] O'Sullivan, L., Furlong, D. and Boland, F. Introducing
CrossMapper: Another Tool for Mapping Musical Control
Parameters NIME 2012, 2012.
[11] Schmeder, A. and Freed, A. Support Vector Machine
Learning for Gesture Signal Estimation with a Piezo-Resistive
Fabric Touch Surface NIME, Sydney, 2010.
[12] Schmeder, A. and Freed, A. uOSC: The Open Sound
Control Reference Platform for Embedded Devices NIME,
Genova, Italy, 2008.
[13] Sha, X.W., Freed, A. and Naveb, N., Sound Design as
Computational Matter. in SigCHI, (Paris, 2013).
[14] Sibert, J.L., Hurley, W.D. and Bleser, T.W. An object-
oriented user interface management system. SIGGRAPH
Comput. Graph., 20 (4). 259-268, 1986.
[15] Taivalsaari, A. Delegation versus concatenation or cloning
is inheritance too. SIGPLAN OOPS Mess., 6 (3). 20-49, 1995.
[16] Wright, M. Open Sound Control: an enabling technology
for musical networking. Organised Sound, 10 (3). 193-200,
2005.

