
o.io: a Unified Communications Framework for Music,
Intermedia and Cloud Interaction

Adrian Freed, David DeFilippo, Rama Gottfried, John MacCallum, Jeff Lubow, Derek Razo,

David Wessel

CNMAT
University of California Berkeley

1750 Arch Street
Berkeley, CA 94709

wessel@cnmat.berkeley.edu

ABSTRACT
We present work on the “o.io” system, a suite of tools for
hiding vendor-specific and protocol- specific details of con-
trollers and actuators and for replacing diffuse documentation
and heterogeneous ontologies with harmonized, situational
schema carried along in real-time with gesture and actuator
control values as Open Sound Control (OSC) bundles. We
introduce useful general design patterns and object-oriented
tools that support them. We conclude with details of support
of two particular devices that illustrate the potential of “o.io”,
the QuNeo and Bluetooth LE heart rate monitors.

Keywords
Cyber-physical Systems, Open Sound Control, OSC, Device
Integration, Lingua Franca, Discovery Protocol, Software
Engineering

1. INTRODUCTION

The rapid evolution of sensor and actuator technologies is
facilitating the development of a plethora of new gesture sens-
ing devices and interfaces for music and media applications.
Legacy devices - game controllers, MIDI devices, biometrc
sensors, lighting controllers - abound as well. Could there be a
harmonizing framework for dynamic mashups of these devic-
es with a unified encoding and programming model? This
question is setting the agenda for important aspects of the
research on the “internet of things” and cyber-physical appli-
cations like robotics.

 Computer music, with its concerns for low-latency and tem-
porally coordinated interaction among a variety of control and
audio devices, for fault tolerant behavior, for rapid deploy-
ment in a performance setting, and for agile and rapid proto-
typing, is now a model discipline for such a research agenda.

 We report on our recent steps to provide such a harmonizing
framework. We have had access to a large and diverse collec-
tion of devices. We rely on Open Sound Control (OSC) the
widely used encoding that has served as a lingua franca for
interactive music and media projects. And we exploit the o-
dot (o.) programming extensions we have made to the Max
and PD environments.

 Along the way we hope to demonstrate some essential soft-
ware engineering practices for the development of music and

media systems that can exploit a collection of past, present,
and future devices.

1.1 Related Work
Examples of existing applications and frameworks used to
harmonize communication among devices include: the now-
defunct GlovePIE for Windows, the actively-supported OS-
Culator [7], TUIO [5] and VRPN[10]. GlovePIE and OSCu-
lator support a small number of devices and the developers
don't provide an API for third parties to add new devices.
VRPN, on the other hand, is not proprietary and has drivers
for the relatively large number of devices favored in the niche
application space of VR scene navigation and control. TUIO
provides a simple OSC namespace and the dynamic semantics
for modeling surface interactions with object collections.
 Our ambition is to create an open, scalable framework for
diverse devices within and between niche application spaces.
We have explored over thirty different devices so far. Scaling
to thousands of different kinds of devices in dozens of appli-
cation spaces will require extraordinary consensus, coopera-
tion and effort, the bulk of which will be done outside our
small development group. Our initial focus, described herein,
is therefore exploration of efficient, agile development tech-
niques–a prerequisite for broad adoption.

1.2 Vision and Contribution

Our main contribution consists of hardware and software tools
(called "o.io") that support the requisite design patterns in-
clude transcoding, interpreting, state caching, logging, help-
ing, simulating, and bridging. We use these tools to unify
communication among a wide variety of devices chosen to
explore the most challenging dimensions of the project. We
routinely use "o.io" in teaching, music, and intermedia pro-
duction projects.

 Our vision is that users will move from having devices at
hand to building applications in minutes rather than hours or
days. A typical concrete scenario is to type “o.io.” into a fresh
Max/MSP or PD object box followed by the model name of
your device (e.g. “leapmotion”). When you plug the device
into USB, the “o.io.leapmotion” object outputs a stream of
OSC messages whose interpretation is self-evident without
needing to consult manuals or a standard’s documentation.
 This dream is related to the old story of “plug and play” often
lampooned as “plug and pray”. We favor stateless models
without registries, complex discovery protocols, API’s, query

schemas or static ontologies. Our “o.io” functions implement
a simpler model that might be called “plug and spray” because
we output a continuous stream of OSC bundles that describe a
sequence of “snapshots” of the entire state of the device.

1.3 Paper Structure

We first describe the architecture of “o.io” from the “bot-
tom up” moving from the concrete encodings of bits to
higher layers that interpret these bits. We offer a more
specific, illustrated account of our support for a touch
surface device, the QuNeo and contrast this with how
“o.io” is used with Bluetooth LE devices supporting the
protocol’s rich service discovery mechanisms. We con-
clude with a summary of the thorny problems encoun-
tered requiring substantial future work and outside col-
laboration.

2. ARCITECTUR AL CHOICES

2.1 Introduction

"o.io" is a suite of tools that hide vendor-specific and protocol-
specific details of controllers and actuators and replace diffuse
documentation and heterogeneous ontologies with harmo-
nized, situational schema that are carried along in real-time
with the gesture and actuator control values as OSC bundles.

2.2 OSC

Aspects of OSC favorable for this project include:
Stability: the specification has not substantially changed since
it was first introduced and there are no signs of immanent
change. OSC has been resilient to outside influence by any
particular corporate or government interests.
Efficiency: OSC uses binary data supporting commonly used
primitive data types.
Exercised: OSC is widely used in diverse communities and
has support in all the major programming languages and ap-
plication frameworks. Many applications and data streams can
be easily bridged to.
Adoption: Wide adoption would suggest that it is relatively
easy to understand and work with.
Expressive: OSC supports the major primitive data types,
hierarchy, and time stamps.
Lightweight: As simply an encoding, OSC doesn’t carry the
baggage of complex protocols.

 OSC does have disadvantages for our purpose: names are not
Unicode so names privilege languages with Latin alphabets;
time tags are not yet widely implemented and no organization
is actively enforcing OSC as a standard–an activity that could
promote interoperability.

2.3 The “o.” platform

We chose the “o.” platform [4]to build “o.io” with because it
has native support for OSC, it affords modern, agile pro-
gramming techniques, and it has recently been ported to PD
and is therefore accessible for free with generous open source
licensing.

 The "o." system was designed to bolt onto dataflow lan-
guages such as Max/MSP and PD endowing them with robust
support for aggregate data structures. The computational
heavy lifting in "o." applications is the "o.expr" component, a
rich expression language supporting vector arithmetic, type
polymorphism, functional programming, symbolic pro-
cessing, higher order functions, and functions as first class
values.
 Although “o.” is a relatively small C library it is not
easy to port to microcontrollers with small memory footprints
or without floating point support. In these cases, we use the
smaller, simpler C++ class library: “OSC for embedded con-
trol and Arduino.” [3]
 A further limitation of “o.” at this time is that it has
not been ported to other media programming environments,
web platforms or tablet devices. Alternatives for this research
we considered include Javascript, TCL/TK and Lua. “o.” has
the performance advantage over many languages of not using
garbage collected storage. Performance is an important con-
cern as we scale data rates while maintaining tight latency
constraints.

2.4 Narrative Description of “o.”
 The following description of “o.io” is narrated in the general
direction of raw device data flowing from devices to become
rich, cooked OSC bundles. The same narrative in reverse tells
the story for control and actuation applications.
 There is a small but important asymmetry to men-
tion with these two directions of flow: protocol implementa-
tions of UDP, for example, usually provide a return address
for response packets. These addresses can be bound to incom-
ing sensor packet data and carried through to the final cooked
OSC data so that applications can send information back to
the data source.

Figure 1. “o.io.quneo” Main Patch

3. IT’S A WRAPPER

The examples that follow use the code abstraction method of
the host language (nested patches) and the data abstraction
method of “o.” (delegation [9]). We call the style of object-
oriented programming that combines the two abstraction
methods “wrapping” because each layer, in an onion-skin
nesting of patches, selects components of incoming OSC
packets, processes relevant data, and delegates the rest up to
surrounding layers.
 Figure 1 is the outermost wrapping patch for the o.io.quneo
device. In the language of class-based object-oriented pro-
gramming we would say that “o.io.quneo” subclasses
“o.io.midi”. We avoid this terminology as it does not do jus-
tice to the dynamic nature of the data flows in “o.io”

3.1 OSC and Embedded OSC

To maximize reuse and minimize development effort, we
have found it fruitful to transcode from raw device data to
OSC as early as we can in the processing stream. For sensor
module devices that produce analog signals or sensors with
digital serial protocols such as SPI and I2C, we use the “OSC
library for embedded microcontrollers and Arduino” with a
Teensy 3.1 ARM-based microcontroller [1]. This OSC li-
brary extends the Arduino stream class so it can be used to
exploit existing Arduino protocol libraries including TCP/IP,
USB serial and asynchronous hardware UART serial.
 A representative example of this approach is “o.io.esplora”
for the Arduino Esplora gamepad/sensor platform. This de-
vice has buttons, joysticks, an LDR, microphone, and accel-
erometer for inputs and an RGB LED for output. OSC bun-
dles are communicated as slip-encoded USB serial byte
streams. The o.io.esplora module has been exercised for two
semesters now in a lab that supports an introductory class on
music programming.
 Another device with embedded OSC encoding is x-OSC
from x-io [2], a platform that communicates OSC payloads
wirelessly as UDP packets. This is our primary rapid devel-
opment tool for music and media projects.

3.2 Transcoders

We have implemented transcoders for the following common
protocols: USB HID, USB Serial, MIDI, UDP, and Bluetooth
LE. Transcoders do the minimum of interpretation of the raw
data stream from each protocol. For example, if it is known in
advance that a particular UDP port will carry OSC encoded
packets (e.g. x-OSC) then “o.io.udp.osc” can be used which
does no transcoding. Otherwise “o.io.udp” is used which
simply places each byte of a UDP packet into an OSC BLOB
array. For USB HID, “o.io.hid” transcodes parameter id/value
pairs into OSC bundles. “o.io.midi” leverages baseline MIDI
parsing support by transcoding into OSC bundles containing

3.3 Packetizers

Some data sources and sinks require packetization and
depacketization. TCP and USB serial are common exam-
ples where we provide “o.io.slip” to buffer streams of
bytes and identify packet boundaries.

3.4 Interpreters

The “o.io” modules described so far are protocol-centric
rather than device-centric and accordingly they constitute
a growing, reusable core. Interpreting o.io modules, on
the other hand, are device specific and are composed
from protocol specific handlers and basic “o.” functions
used to name, normalize, and structure parameters. Now
that we have built a solid core of protocol support and
associated helper functions, we find it is these interpre-
tive functions that require the bulk of the development
time assigned to each device.
3.4.1 Motivations and usability
Before describing this workflow in detail we introduce
some motivating principles and goals for the interpreting
modules.

The primary goal of interpreting device data as OSC
messages is to improve the usability of systems built with
the devices. What frustrates usability is the great diffu-
sion of information about the parameters being represent-
ed. Some of it is in device user manuals, some is in oper-
ating system configuration panels, some is in special con-
figuration modes of the device itself and much is implic-
itly referenced in protocol standard’s documents. For
many devices useful information is deliberately obscured
by obfuscation and encryption protocols, further diffused
in documents that resume efforts to reverse engineer and
recover these trade secrets. What users and device inte-
grators need is dynamic, valid information at hand as the
device is integrated into a system and used.
3.4.2 Situators
A good number of devices we work with have labeled
controls. These labels are clearly a better basis for a pa-
rameter namespace than the numerical encodings typical
of the MIDI, and HID standards, for example. We call the
process of replacing meaningless numbers with meaning-
ful names “situation” because we are reorganizing the
data to support the situation of the user rather than the
situation of the developer or standard’s document authors
[8].

Many devices have no labels or will be repurposed so
the labels are not meaningful. These new situations re-
quire development of a custom namespace. The
namespace design problem is rich and interesting enough
in itself to be the subject of a separate paper. Here we
summarize a few practical observations on namespace
design.
3.4.2.1 Multiple Interpretations
The x-OSC module is representative of devices in related
ecosystems (e.g., Arduino) that are specifically designed
to be customized and incorporated into larger systems.
Many music and media projects employ such platforms.
Each of x-OSC’s 32 I/O pins can be set to different elec-
trical interfacing conventions: analog, digital, PWM etc.
These pins will be connected to sensors and actuators of
the integrator’s choosing. The integrator is best situated
to name and interpret the data acquired and sent to the
pins. In a way directly analogous to extending a class in a

traditional object-oriented software system, we provide a
baseline “o.io.xosc” module that the user extends by re-
writing its stream of OSC bundles.

The underlying “o.” system has a cloning semantics that
afford the addition of data to OSC bundles as they pass
through processing steps. This promotes the accretion of
multiple interpretations and reinterpretations of raw in-
coming device data.

Part of the namespace design problem is deciding when
the benefits of multiple interpretations outweigh the extra
cognitive burden of studying larger packets.
3.4.2.2 Normativity

When concerned that a namespace might be legible to a
very narrow community of users, we search for a func-
tionally equivalent namespace that might be more gener-
ally accessible. For example, we use chessboard notation
(letter/numeral) to identify elements in two-dimensional
grids. This avoids many ambiguities inherent with
row/column, column/row, bottom to top, top to bottom
etc.
3.4.3 Neutralizers

The numerical domain of parameter values varies from
device to device. Often the domain represents an imple-
mentation bias such as the values resulting from an A/D
convertor or constraints in the number of bits available in
a byte or nibble. We find it fruitful to scale parameters
into the unit interval [0,1] using IEEE 32-bit floating
point numbers. For devices with a center detent or spring
return such as joysticks we will use the interval [-1,1].
The intention is to be “value neutral” favoring neither
designers or users and to support rescaling by simple
multiplications.

This unit scaling is useful when, for example, updating
a device from 10-bit A/D conversion to 12-bits. This
change is seamless when applications are built using the
unit interval and the device itself does this “neutralizing”
from “hardware” units.
3.4.4 Calibrators
Calibration processes both scale and label parameter val-
ues according to an established norm. We favor standards
that are broadly used, well documented and with stabil-
ity of consensus and dissensus, e.g. SI units. Where cali-
bration requires the storage of device specific scaling
parameters, we note that the user experience improves
greatly if the devices themselves can store parameters in
non-volatile memory. Examples of this include x-OSC
and the Nintendo Wiimote.
3.4.5 Fusers
Fusion involves the temporal and spatial aspects of pa-
rameter streams. Spatial grouping is conceptually straight
forward and proceeds using the idea that proximate val-
ues are grouped in the OSC bundle representation.
Grouping mechanisms include: coordinates in OSC lists,
similar parameters in the same OSC sub-bundle, and hi-
erarchical design of the OSC namespace. Groupings can
involve rich topologies involving connectedness by spa-
tial position, function, color, interaction modality and
physical constraints (e.g. joystick ordinates).

Temporal fusion can be very challenging–especially for
older protocols, where timing is an implicit feature of the
transport protocol, e.g. MIDI and RS232. OSC bundles
were originally invented to enable representation of con-
currently sampled data or describing the desired state of a
system at a future time. The QuNeo is an example where
a single gesture (pressure applied to a silicone pad sur-
face) results in a sequence of MIDI messages represented
without explicit framing. By experimentation it is possi-
ble to determine the order in which MIDI sequences are
issued and thereby provide reliable packetization and
state representation.
3.4.6 Unifyers
Devices such as keyboards, mice, music keyboards, and
gamepads exist in numerous minor variants of a core
theme. With unification we harmonize the parameter val-
ues and address space. Almost all gamepads, for exam-
ple, are composed from the same elements: switches,
joystick, and a button array. Studying a dozen USB HID
gamepads, we found that the numbering of switches dif-
fered between devices and operating systems–as did the
range of joystick values. Scaling to the unit interval
(“neutralization”) suffices for unification of joystick val-
ues. The switches require a custom mapping to a
namespace unified among joysticks. The success of unifi-
cation is measured by whether different models and de-
vices can be substituted for each other in a particular ap-
plication.

Our most ambitious application of this unification de-
sign pattern is associated with organizing support for
motion capture devices such as the Kinect affording an
“o.io.skeleton.*” suite to serve gesture processing and
mapping applications in a device-independent manner.
3.4.7 Validators and Simulators
For complex or weakly documented devices it can be
very challenging to develop and validate “o.io” modules.
We have learned to be suspicious of diffuse documenta-
tion and even the ontological data that protocols like USB
are required to provide in the device implementation.
What matters to the user is what the device they have in
hand actually does not what a potentially outdated docu-
ment says. This problem is exacerbated when devices,
their drivers or API’s are field upgradeable.

Building a simulation of the device itself is a good way
to address these difficulties. These simulations serve as
proxies when the physical device is unavailable in addi-
tion to aiding in the verification of the implementations.
Often we can put the physical device and its on-screen
simulation side by side and operate each independently.
This approach is strongly related to the mod-
el/view/controller design pattern.
 We have found the effort to build simulations pays off
in terms of time saved testing and validating and discov-
ering what devices actually do interacting with them.
Simulations also have a pedagogical value as they afford
rapid sketches of potential future variations of a device.

To be clear, we are not proposing completely faithful
emulations of a device; too much is lost gesturally in
many cases anyway when mouse or multi-touch interac-

tions substitute for device interactions. Our focus with
these simulations is to expressively manifest the gestures
in a visual mode that complements and is parallel to the
lexical representation in OSC.

 Figure 2. QuNeo and its Simulation

3.4.8 State cachers

When computer data rates were slow compared to pro-
cessing rates, it became the habit of IO device designers
to minimize the bit representations of data and use a
“send on change” approach to schedule communications.
We have noticed that applications can be enormously
simplified with an alternative, stateless-protocol approach
where no assumption is made that a receiver has an accu-
rate representation of the state of a system. This requires
that the entire state of the device be transmitted when a
change is to be communicated. For the many legacy de-
vices that don’t do this we implement a cache that models
and reflects the state of the device.

We have developed helper functions for common de-
vice semantics such as buttons. A single bit sufficient to
represent that state of a button is represented in o.io OSC
streams using four messages, two boolean values that
represent the state of the switch (up/down) and two that
represent transitions (pressed/released). We also provide
an OSC time stamp and sequence number to detect lost
packets. bundles therefore represents valid and complete
representations of a past device state and mechanism to
detect lost packets. These are prerequisites for the subtle
details that have to be implemented well to support com-
munications in high data loss wireless environments, a
problem carefully managed in the RTP-MIDI standard
[6].

4. CASE STUDY: o.io.quneo

The QuNeo is a small, flat control surface with a hetero-
geneous array of silicone position and pressure sensors
back illuminated with colored LEDs. (See Figure 2). It is
interfaced using USB with MIDI encoding. Interactions
with each sensor produce pairs of values represented as
MIDI “note on/off” and “control change” messages.
There is no simple, natural mapping from the key-
board/controller orientation of MIDI to the spatial ar-
rangement of the QuNeo buttons, sliders and pads. This is
reflected in a decision tree (built with “o.cond”) that is
required to demultiplex the streams according to which
sensor group messages refer to. Data from each path in
the decision tree trickle down to patches like the ones
shown Figure 3 where data from the two MIDI message

types are combined into a single, human-readable OSC
message using simple modulo arithmetic operations and
table lookups.

Figure 3

Spatial location of the 16 control pads of the QuNeo are

named according to a chessboard grid from the viewpoint
of White, where the bottom leftmost pad is /a/1 and the
top rightmost pad is /d/4. This example illustrates unusu-
al features of the o.expr language: provision for dynamic
operations on names and a functional incarnation of the
assignment operator.

The named (situated) gesture streams flow to a common
collection point to be prepared for output with
“o.collectwithtimeout.” This collects the incoming en-
coded data using a 3ms lease to aggregate 'concurrent
events,' – i.e. touching multiple pads at once. An
“o.union” object caches the state of the QuNeo merging
state changes into the stored bundle as required. When
the lease expires and there has been a change of state, the
entire OSC bundle stored by “o.union” is dispatched.

5. CASE STUDY: o.io.bluetoothle

There are no unified mechanisms in any operating system
for discovery of what devices are attached to a system
and what services are available from them. Each operat-
ing system offers protocol specific APIs. We generally
address this difficulty with a separation of concerns re-
flected in the second inlet of the “o.io” functions present-

ed so far. This second inlet is used to define which par-
ticular device an “o.io” function handles the stream of.
Separate “o.io” functions handle enumeration and im-
plement user interfaces for the selection of particular de-
vices.

BluetoothLE is a relatively new protocol we have added
support for that has an interesting approach to enumera-
tion that may be the solid basis of a more general enu-
meration scheme. We outline a particular example we
have used in intermedia, dance and music projects that
use wireless BluetoothLE heart rate sensors for each
dancer.

When a BluetoothLE heart rate monitor (HRM) begins
transmitting data, the “o.io.bluetoothle” object receives a
callback from the operating system's Bluetooth API with
information about the peripheral. In response, the object
transcodes the data into an OSC bundle and outputs it. If
the ambient patch appends the message
[/discover/services true] and feeds it back to
“o.io.bluetoothle” the object calls the BluetoothLE API to
ask for enumeration of the services the device provides.
In response to the OS callback for each service,
o.io.bluetoothle sends an OSC bundle containing infor-
mation about the service into the ambient patch. This
time around the ambient patch can append the message
[/discover/characteristics true], whence a service-
characteristic request will be issued and the resulting
enumeration of the characteristics will be transcoded and
output into the patch. Characteristics are the fine-grained
attributes that can contain single value, usually a sensor
measurand. These values are obtained by appending one
of the following messages to the characteristic bundle and
sending it up to o.io.bluetoothle [/read true], [/notify
true], or [/write = <value>].

This call and response between “o.io.bluetoothle” and
the host environment is implemented as a reentrant
coroutine to avoid being interrupted by the Bluetooth LE
API. It also allows for a mostly stateless implementation
of “o.io.bluetoothle”. We find this delegation style of
programming [9] easier to understand, and more reliable
than traditional threads or state machine implementations.

An important challenge in general purpose wrapper de-
sign is making something flexible enough to support
functionality not anticipated at the time the wrapper was
built. “o.io.bluetoothle.hrm” was tested with two brands
of HRMs. To support features that future hardware may
provide, OSC bundles containing information about un-
recognized services and characteristics are delegated to
the ambient patch via the right-most outlet. This allows a
user to extend the functionality of “o.io.bluetoothle.hrm”
via another layer of wrapping.

6. CHALLENGES AND NEW WORK

From the usability standpoint we have identified a major
difficulty with many legacy devices: they don’t have
unique identifiers even if their underlying protocol sup-
ports unique IDs or serial numbers. It is really common in

interactive music and media projects to combine several
devices, one for control with each hand for example.
Without unique device ID’s consistent enumeration to
identify which device is on the left or right is impossible.

We will continue to encourage new device developers
to take the extra step of including a unique ID. For legacy
devices we are developing shim hardware to insert unique
ID’s in the data stream. This will be an opportunity to
also add time tagging, transcode early in the protocol
stream and avoid the problem with USB keyboards, mice
and trackpads that the host operating system monopolizes
their data streams wrapped in proprietary API.

In conclusion, we have demonstrated the viability of
“o.” for a wide variety of devices sufficient in number to
be confident of our workflow and design patterns. We
look forward to addressing further the questions of scal-
ing by distributing the system and supporting external
developers.

Acknowledgements
This work was supported in part by the TerraSwarm Re-
search Center, one of six centers supported by the STAR-
net phase of the Focus Center Research Program (FCRP)
a Semiconductor Research Corporation program spon-
sored by MARCO and DARPA.

7. REFERENCES

[1] Teensy 3 ARM Microcontroller. 2014.
http://www.pjrc.com/store/teensy3.html.

[2] x-OSC Wireless Controller. 2014. http://www.x-
io.co.uk/products/x-osc/.

[3] CNMAT OSC for Embedded Control and Arduino. 2013.
https://github.com/CNMAT/OSC.

[4] Freed, A.M., J.; Schmeder, A. Composability for Musical
Gesture Signal Processing using new OSC-based
Object and Functional Programming Extensions to
Max/MSP NIME 2011, Oslo, 2011.

[5] Kaltenbrunner, M., Bovermann, T., Bencina, R. and
Costanza, E. TUIO: A protocol for table-top tangible
user interfaces 6th International Workshop on
Gesture in Human-Computer Interaction and
Simulation, 2005.

[6] Lazzaro, J. and Wawrzynek, J. An Implementation Guide
for RTP MIDI, RFC 4696, November, 2006.

[7] Osculator Osculator. 2014. http://www.osculator.net.
[8] Suchman, L.A. Plans and situated actions : the problem of

human-machine communication. Cambridge
University Press, Cambridge [Cambridgeshire]; New
York, 1987.

[9] Taivalsaari, A. Delegation versus concatenation or cloning
is inheritance too. SIGPLAN OOPS Mess., 6 (3). 20-
49, 1995.

[10] Taylor II, R.M., Hudson, T.C., Seeger, A., Weber, H.,
Juliano, J. and Helser, A.T., VRPN: a device-
independent, network-transparent VR peripheral
system. in Proceedings of the ACM symposium on
Virtual reality software and technology, (2001),
ACM, 55-61.

Copyright: © 2014 First author et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License 3.0
Unported, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are credited.

